From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from mga06.intel.com (mga06.intel.com [134.134.136.31]) by dpdk.org (Postfix) with ESMTP id 31C29493D for ; Tue, 26 Mar 2019 07:11:25 +0100 (CET) X-Amp-Result: SKIPPED(no attachment in message) X-Amp-File-Uploaded: False Received: from fmsmga001.fm.intel.com ([10.253.24.23]) by orsmga104.jf.intel.com with ESMTP/TLS/DHE-RSA-AES256-GCM-SHA384; 25 Mar 2019 23:11:24 -0700 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.60,271,1549958400"; d="scan'208";a="158420136" Received: from dpdk26.sh.intel.com ([10.67.110.164]) by fmsmga001.fm.intel.com with ESMTP; 25 Mar 2019 23:11:23 -0700 From: Wenzhuo Lu To: dev@dpdk.org Cc: Wenzhuo Lu Date: Tue, 26 Mar 2019 14:16:49 +0800 Message-Id: <1553581011-94181-7-git-send-email-wenzhuo.lu@intel.com> X-Mailer: git-send-email 1.9.3 In-Reply-To: <1553581011-94181-1-git-send-email-wenzhuo.lu@intel.com> References: <1551340136-83843-1-git-send-email-wenzhuo.lu@intel.com> <1553581011-94181-1-git-send-email-wenzhuo.lu@intel.com> Subject: [dpdk-dev] [PATCH v7 6/8] net/ice: support Rx AVX2 vector X-BeenThere: dev@dpdk.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: DPDK patches and discussions List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Tue, 26 Mar 2019 06:11:25 -0000 Signed-off-by: Wenzhuo Lu --- drivers/net/ice/Makefile | 19 ++ drivers/net/ice/ice_rxtx.c | 16 +- drivers/net/ice/ice_rxtx.h | 2 + drivers/net/ice/ice_rxtx_vec_avx2.c | 622 ++++++++++++++++++++++++++++++++++++ drivers/net/ice/meson.build | 15 + 5 files changed, 671 insertions(+), 3 deletions(-) create mode 100644 drivers/net/ice/ice_rxtx_vec_avx2.c diff --git a/drivers/net/ice/Makefile b/drivers/net/ice/Makefile index 92594bb..5ba59f4 100644 --- a/drivers/net/ice/Makefile +++ b/drivers/net/ice/Makefile @@ -58,4 +58,23 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y) SRCS-$(CONFIG_RTE_LIBRTE_ICE_PMD) += ice_rxtx_vec_sse.c endif +ifeq ($(findstring RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2) + CC_AVX2_SUPPORT=1 +else + CC_AVX2_SUPPORT=\ + $(shell $(CC) -march=core-avx2 -dM -E - &1 | \ + grep -q AVX2 && echo 1) + ifeq ($(CC_AVX2_SUPPORT), 1) + ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y) + CFLAGS_ice_rxtx_vec_avx2.o += -march=core-avx2 + else + CFLAGS_ice_rxtx_vec_avx2.o += -mavx2 + endif + endif +endif + +ifeq ($(CC_AVX2_SUPPORT), 1) + SRCS-$(CONFIG_RTE_LIBRTE_ICE_PMD) += ice_rxtx_vec_avx2.c +endif + include $(RTE_SDK)/mk/rte.lib.mk diff --git a/drivers/net/ice/ice_rxtx.c b/drivers/net/ice/ice_rxtx.c index 715dcad..28d5974 100644 --- a/drivers/net/ice/ice_rxtx.c +++ b/drivers/net/ice/ice_rxtx.c @@ -1505,7 +1505,8 @@ #ifdef RTE_ARCH_X86 if (dev->rx_pkt_burst == ice_recv_pkts_vec || - dev->rx_pkt_burst == ice_recv_scattered_pkts_vec) + dev->rx_pkt_burst == ice_recv_scattered_pkts_vec || + dev->rx_pkt_burst == ice_recv_pkts_vec_avx2) return ptypes; #endif @@ -2243,21 +2244,30 @@ void __attribute__((cold)) #ifdef RTE_ARCH_X86 struct ice_rx_queue *rxq; int i; + bool use_avx2 = false; if (!ice_rx_vec_dev_check(dev)) { for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; (void)ice_rxq_vec_setup(rxq); } + + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) + use_avx2 = true; + if (dev->data->scattered_rx) { PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = ice_recv_scattered_pkts_vec; } else { - PMD_DRV_LOG(DEBUG, "Using Vector Rx (port %d).", + PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).", + use_avx2 ? "avx2 " : "", dev->data->port_id); - dev->rx_pkt_burst = ice_recv_pkts_vec; + dev->rx_pkt_burst = use_avx2 ? + ice_recv_pkts_vec_avx2 : + ice_recv_pkts_vec; } return; diff --git a/drivers/net/ice/ice_rxtx.h b/drivers/net/ice/ice_rxtx.h index 1dde4e7..d1c9b92 100644 --- a/drivers/net/ice/ice_rxtx.h +++ b/drivers/net/ice/ice_rxtx.h @@ -179,4 +179,6 @@ uint16_t ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); uint16_t ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); +uint16_t ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); #endif /* _ICE_RXTX_H_ */ diff --git a/drivers/net/ice/ice_rxtx_vec_avx2.c b/drivers/net/ice/ice_rxtx_vec_avx2.c new file mode 100644 index 0000000..42f761d --- /dev/null +++ b/drivers/net/ice/ice_rxtx_vec_avx2.c @@ -0,0 +1,622 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2019 Intel Corporation + */ + +#include "ice_rxtx_vec_common.h" + +#include + +#ifndef __INTEL_COMPILER +#pragma GCC diagnostic ignored "-Wcast-qual" +#endif + +static inline void +ice_rxq_rearm(struct ice_rx_queue *rxq) +{ + int i; + uint16_t rx_id; + volatile union ice_rx_desc *rxdp; + struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start]; + + rxdp = rxq->rx_ring + rxq->rxrearm_start; + + /* Pull 'n' more MBUFs into the software ring */ + if (rte_mempool_get_bulk(rxq->mp, + (void *)rxep, + ICE_RXQ_REARM_THRESH) < 0) { + if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >= + rxq->nb_rx_desc) { + __m128i dma_addr0; + + dma_addr0 = _mm_setzero_si128(); + for (i = 0; i < ICE_DESCS_PER_LOOP; i++) { + rxep[i].mbuf = &rxq->fake_mbuf; + _mm_store_si128((__m128i *)&rxdp[i].read, + dma_addr0); + } + } + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += + ICE_RXQ_REARM_THRESH; + return; + } + +#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC + struct rte_mbuf *mb0, *mb1; + __m128i dma_addr0, dma_addr1; + __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, + RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 2 mbufs in one loop */ + for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) { + __m128i vaddr0, vaddr1; + + mb0 = rxep[0].mbuf; + mb1 = rxep[1].mbuf; + + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + + /* convert pa to dma_addr hdr/data */ + dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); + dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); + + /* add headroom to pa values */ + dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); + dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); + + /* flush desc with pa dma_addr */ + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); + } +#else + struct rte_mbuf *mb0, *mb1, *mb2, *mb3; + __m256i dma_addr0_1, dma_addr2_3; + __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 4 mbufs in one loop */ + for (i = 0; i < ICE_RXQ_REARM_THRESH; + i += 4, rxep += 4, rxdp += 4) { + __m128i vaddr0, vaddr1, vaddr2, vaddr3; + __m256i vaddr0_1, vaddr2_3; + + mb0 = rxep[0].mbuf; + mb1 = rxep[1].mbuf; + mb2 = rxep[2].mbuf; + mb3 = rxep[3].mbuf; + + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr); + vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr); + + /** + * merge 0 & 1, by casting 0 to 256-bit and inserting 1 + * into the high lanes. Similarly for 2 & 3 + */ + vaddr0_1 = + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), + vaddr1, 1); + vaddr2_3 = + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2), + vaddr3, 1); + + /* convert pa to dma_addr hdr/data */ + dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1); + dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3); + + /* add headroom to pa values */ + dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room); + dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room); + + /* flush desc with pa dma_addr */ + _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1); + _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3); + } + +#endif + + rxq->rxrearm_start += ICE_RXQ_REARM_THRESH; + if (rxq->rxrearm_start >= rxq->nb_rx_desc) + rxq->rxrearm_start = 0; + + rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH; + + rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? + (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); + + /* Update the tail pointer on the NIC */ + ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id); +} + +#define PKTLEN_SHIFT 10 + +static inline uint16_t +_ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, uint8_t *split_packet) +{ +#define ICE_DESCS_PER_LOOP_AVX 8 + + const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, + 0, rxq->mbuf_initializer); + struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; + volatile union ice_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail; + const int avx_aligned = ((rxq->rx_tail & 1) == 0); + + rte_prefetch0(rxdp); + + /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */ + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX); + + /* See if we need to rearm the RX queue - gives the prefetch a bit + * of time to act + */ + if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH) + ice_rxq_rearm(rxq); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available + */ + if (!(rxdp->wb.qword1.status_error_len & + rte_cpu_to_le_32(1 << ICE_RX_DESC_STATUS_DD_S))) + return 0; + + /* constants used in processing loop */ + const __m256i crc_adjust = + _mm256_set_epi16 + (/* first descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0, /* ignore pkt_type field */ + /* second descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0 /* ignore pkt_type field */ + ); + + /* 8 packets DD mask, LSB in each 32-bit value */ + const __m256i dd_check = _mm256_set1_epi32(1); + + /* 8 packets EOP mask, second-LSB in each 32-bit value */ + const __m256i eop_check = _mm256_slli_epi32(dd_check, + ICE_RX_DESC_STATUS_EOF_S); + + /* mask to shuffle from desc. to mbuf (2 descriptors)*/ + const __m256i shuf_msk = + _mm256_set_epi8 + (/* first descriptor */ + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ + 15, 14, /* octet 15~14, 16 bits data_len */ + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ + 15, 14, /* octet 15~14, low 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF, /*pkt_type set as unknown */ + /* second descriptor */ + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ + 15, 14, /* octet 15~14, 16 bits data_len */ + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ + 15, 14, /* octet 15~14, low 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF /*pkt_type set as unknown */ + ); + /** + * compile-time check the above crc and shuffle layout is correct. + * NOTE: the first field (lowest address) is given last in set_epi + * calls above. + */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); + + /* Status/Error flag masks */ + /** + * mask everything except RSS, flow director and VLAN flags + * bit2 is for VLAN tag, bit11 for flow director indication + * bit13:12 for RSS indication. Bits 3-5 of error + * field (bits 22-24) are for IP/L4 checksum errors + */ + const __m256i flags_mask = + _mm256_set1_epi32((1 << 2) | (1 << 11) | + (3 << 12) | (7 << 22)); + /** + * data to be shuffled by result of flag mask. If VLAN bit is set, + * (bit 2), then position 4 in this array will be used in the + * destination + */ + const __m256i vlan_flags_shuf = + _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, + 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0); + /** + * data to be shuffled by result of flag mask, shifted down 11. + * If RSS/FDIR bits are set, shuffle moves appropriate flags in + * place. + */ + const __m256i rss_flags_shuf = + _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, + 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, + 0, 0, 0, 0, PKT_RX_FDIR, 0); + + /** + * data to be shuffled by the result of the flags mask shifted by 22 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + /* shift right 1 bit to make sure it not exceed 255 */ + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1, + /* second 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); + + const __m256i cksum_mask = + _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_EIP_CKSUM_BAD); + + RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */ + + uint16_t i, received; + + for (i = 0, received = 0; i < nb_pkts; + i += ICE_DESCS_PER_LOOP_AVX, + rxdp += ICE_DESCS_PER_LOOP_AVX) { + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ + _mm256_storeu_si256((void *)&rx_pkts[i], + _mm256_loadu_si256((void *)&sw_ring[i])); +#ifdef RTE_ARCH_X86_64 + _mm256_storeu_si256 + ((void *)&rx_pkts[i + 4], + _mm256_loadu_si256((void *)&sw_ring[i + 4])); +#endif + + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; +#ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC + /* for AVX we need alignment otherwise loads are not atomic */ + if (avx_aligned) { + /* load in descriptors, 2 at a time, in reverse order */ + raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6)); + rte_compiler_barrier(); + raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4)); + rte_compiler_barrier(); + raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2)); + rte_compiler_barrier(); + raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0)); + } else +#endif + { + const __m128i raw_desc7 = + _mm_load_si128((void *)(rxdp + 7)); + rte_compiler_barrier(); + const __m128i raw_desc6 = + _mm_load_si128((void *)(rxdp + 6)); + rte_compiler_barrier(); + const __m128i raw_desc5 = + _mm_load_si128((void *)(rxdp + 5)); + rte_compiler_barrier(); + const __m128i raw_desc4 = + _mm_load_si128((void *)(rxdp + 4)); + rte_compiler_barrier(); + const __m128i raw_desc3 = + _mm_load_si128((void *)(rxdp + 3)); + rte_compiler_barrier(); + const __m128i raw_desc2 = + _mm_load_si128((void *)(rxdp + 2)); + rte_compiler_barrier(); + const __m128i raw_desc1 = + _mm_load_si128((void *)(rxdp + 1)); + rte_compiler_barrier(); + const __m128i raw_desc0 = + _mm_load_si128((void *)(rxdp + 0)); + + raw_desc6_7 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc6), + raw_desc7, 1); + raw_desc4_5 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc4), + raw_desc5, 1); + raw_desc2_3 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc2), + raw_desc3, 1); + raw_desc0_1 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc0), + raw_desc1, 1); + } + + if (split_packet) { + int j; + + for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++) + rte_mbuf_prefetch_part2(rx_pkts[i + j]); + } + + /** + * convert descriptors 4-7 into mbufs, adjusting length and + * re-arranging fields. Then write into the mbuf + */ + const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, + PKTLEN_SHIFT); + const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, + PKTLEN_SHIFT); + const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, + len6_7, 0x80); + const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, + len4_5, 0x80); + __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk); + __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk); + + mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust); + mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust); + /** + * to get packet types, shift 64-bit values down 30 bits + * and so ptype is in lower 8-bits in each + */ + const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30); + const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30); + const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24); + const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8); + const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24); + const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8); + + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4); + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0); + /* merge the status bits into one register */ + const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7, + desc4_5); + + /** + * convert descriptors 0-3 into mbufs, adjusting length and + * re-arranging fields. Then write into the mbuf + */ + const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, + PKTLEN_SHIFT); + const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, + PKTLEN_SHIFT); + const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, + len2_3, 0x80); + const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, + len0_1, 0x80); + __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk); + __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk); + + mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust); + mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust); + /* get the packet types */ + const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30); + const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30); + const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24); + const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8); + const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24); + const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8); + + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4); + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0); + /* merge the status bits into one register */ + const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3, + desc0_1); + + /** + * take the two sets of status bits and merge to one + * After merge, the packets status flags are in the + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + */ + __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, + status0_3); + + /* now do flag manipulation */ + + /* get only flag/error bits we want */ + const __m256i flag_bits = + _mm256_and_si256(status0_7, flags_mask); + /* set vlan and rss flags */ + const __m256i vlan_flags = + _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits); + const __m256i rss_flags = + _mm256_shuffle_epi8(rss_flags_shuf, + _mm256_srli_epi32(flag_bits, 11)); + /** + * l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 22)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); + + /* merge flags */ + const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, + _mm256_or_si256(rss_flags, vlan_flags)); + /** + * At this point, we have the 8 sets of flags in the low 16-bits + * of each 32-bit value in vlan0. + * We want to extract these, and merge them with the mbuf init + * data so we can do a single write to the mbuf to set the flags + * and all the other initialization fields. Extracting the + * appropriate flags means that we have to do a shift and blend + * for each mbuf before we do the write. However, we can also + * add in the previously computed rx_descriptor fields to + * make a single 256-bit write per mbuf + */ + /* check the structure matches expectations */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != + offsetof(struct rte_mbuf, rearm_data) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != + RTE_ALIGN(offsetof(struct rte_mbuf, + rearm_data), + 16)); + /* build up data and do writes */ + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, + rearm6, rearm7; + rearm6 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 8), + 0x04); + rearm4 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 4), + 0x04); + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(mbuf_flags, 4), + 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + /* write to mbuf */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, + rearm6); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, + rearm4); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, + rearm2); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, + rearm0); + + /* repeat for the odd mbufs */ + const __m256i odd_flags = + _mm256_castsi128_si256 + (_mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 8), + 0x04); + rearm5 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 4), + 0x04); + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(odd_flags, 4), + 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + /* again write to mbufs */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, + rearm7); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, + rearm5); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, + rearm3); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, + rearm1); + + /* extract and record EOP bit */ + if (split_packet) { + const __m128i eop_mask = + _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S); + const __m256i eop_bits256 = _mm256_and_si256(status0_7, + eop_check); + /* pack status bits into a single 128-bit register */ + const __m128i eop_bits = + _mm_packus_epi32 + (_mm256_castsi256_si128(eop_bits256), + _mm256_extractf128_si256(eop_bits256, + 1)); + /** + * flip bits, and mask out the EOP bit, which is now + * a split-packet bit i.e. !EOP, rather than EOP one. + */ + __m128i split_bits = _mm_andnot_si128(eop_bits, + eop_mask); + /** + * eop bits are out of order, so we need to shuffle them + * back into order again. In doing so, only use low 8 + * bits, which acts like another pack instruction + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 + * [Since we use epi8, the 16-bit positions are + * multiplied by 2 in the eop_shuffle value.] + */ + __m128i eop_shuffle = + _mm_set_epi8(/* zero hi 64b */ + 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, + /* move values to lo 64b */ + 8, 0, 10, 2, + 12, 4, 14, 6); + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); + *(uint64_t *)split_packet = + _mm_cvtsi128_si64(split_bits); + split_packet += ICE_DESCS_PER_LOOP_AVX; + } + + /* perform dd_check */ + status0_7 = _mm256_and_si256(status0_7, dd_check); + status0_7 = _mm256_packs_epi32(status0_7, + _mm256_setzero_si256()); + + uint64_t burst = __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_extracti128_si256 + (status0_7, 1))); + burst += __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_castsi256_si128(status0_7))); + received += burst; + if (burst != ICE_DESCS_PER_LOOP_AVX) + break; + } + + /* update tail pointers */ + rxq->rx_tail += received; + rxq->rx_tail &= (rxq->nb_rx_desc - 1); + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ + rxq->rx_tail--; + received--; + } + rxq->rxrearm_nb += received; + return received; +} + +/** + * Notice: + * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet + */ +uint16_t +ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); +} diff --git a/drivers/net/ice/meson.build b/drivers/net/ice/meson.build index 469264d..2bec688 100644 --- a/drivers/net/ice/meson.build +++ b/drivers/net/ice/meson.build @@ -14,4 +14,19 @@ includes += include_directories('base') if arch_subdir == 'x86' sources += files('ice_rxtx_vec_sse.c') + + # compile AVX2 version if either: + # a. we have AVX supported in minimum instruction set baseline + # b. it's not minimum instruction set, but supported by compiler + if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2') + sources += files('ice_rxtx_vec_avx2.c') + elif cc.has_argument('-mavx2') + ice_avx2_lib = static_library('ice_avx2_lib', + 'ice_rxtx_vec_avx2.c', + dependencies: [static_rte_ethdev, + static_rte_kvargs, static_rte_hash], + include_directories: includes, + c_args: [cflags, '-mavx2']) + objs += ice_avx2_lib.extract_objects('ice_rxtx_vec_avx2.c') + endif endif -- 1.9.3 From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from dpdk.org (dpdk.org [92.243.14.124]) by dpdk.space (Postfix) with ESMTP id BB2FFA05D3 for ; Tue, 26 Mar 2019 07:12:15 +0100 (CET) Received: from [92.243.14.124] (localhost [127.0.0.1]) by dpdk.org (Postfix) with ESMTP id EF0764F98; Tue, 26 Mar 2019 07:11:41 +0100 (CET) Received: from mga06.intel.com (mga06.intel.com [134.134.136.31]) by dpdk.org (Postfix) with ESMTP id 31C29493D for ; Tue, 26 Mar 2019 07:11:25 +0100 (CET) X-Amp-Result: SKIPPED(no attachment in message) X-Amp-File-Uploaded: False Received: from fmsmga001.fm.intel.com ([10.253.24.23]) by orsmga104.jf.intel.com with ESMTP/TLS/DHE-RSA-AES256-GCM-SHA384; 25 Mar 2019 23:11:24 -0700 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.60,271,1549958400"; d="scan'208";a="158420136" Received: from dpdk26.sh.intel.com ([10.67.110.164]) by fmsmga001.fm.intel.com with ESMTP; 25 Mar 2019 23:11:23 -0700 From: Wenzhuo Lu To: dev@dpdk.org Cc: Wenzhuo Lu Date: Tue, 26 Mar 2019 14:16:49 +0800 Message-Id: <1553581011-94181-7-git-send-email-wenzhuo.lu@intel.com> X-Mailer: git-send-email 1.9.3 In-Reply-To: <1553581011-94181-1-git-send-email-wenzhuo.lu@intel.com> References: <1551340136-83843-1-git-send-email-wenzhuo.lu@intel.com> <1553581011-94181-1-git-send-email-wenzhuo.lu@intel.com> Subject: [dpdk-dev] [PATCH v7 6/8] net/ice: support Rx AVX2 vector X-BeenThere: dev@dpdk.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: DPDK patches and discussions List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: dev-bounces@dpdk.org Sender: "dev" Content-Type: text/plain; charset="UTF-8" Message-ID: <20190326061649.WyhYVyfi_3GNPNKma0suvAS-5Kutb14GrnnRKo9pMXY@z> Signed-off-by: Wenzhuo Lu --- drivers/net/ice/Makefile | 19 ++ drivers/net/ice/ice_rxtx.c | 16 +- drivers/net/ice/ice_rxtx.h | 2 + drivers/net/ice/ice_rxtx_vec_avx2.c | 622 ++++++++++++++++++++++++++++++++++++ drivers/net/ice/meson.build | 15 + 5 files changed, 671 insertions(+), 3 deletions(-) create mode 100644 drivers/net/ice/ice_rxtx_vec_avx2.c diff --git a/drivers/net/ice/Makefile b/drivers/net/ice/Makefile index 92594bb..5ba59f4 100644 --- a/drivers/net/ice/Makefile +++ b/drivers/net/ice/Makefile @@ -58,4 +58,23 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y) SRCS-$(CONFIG_RTE_LIBRTE_ICE_PMD) += ice_rxtx_vec_sse.c endif +ifeq ($(findstring RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2) + CC_AVX2_SUPPORT=1 +else + CC_AVX2_SUPPORT=\ + $(shell $(CC) -march=core-avx2 -dM -E - &1 | \ + grep -q AVX2 && echo 1) + ifeq ($(CC_AVX2_SUPPORT), 1) + ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y) + CFLAGS_ice_rxtx_vec_avx2.o += -march=core-avx2 + else + CFLAGS_ice_rxtx_vec_avx2.o += -mavx2 + endif + endif +endif + +ifeq ($(CC_AVX2_SUPPORT), 1) + SRCS-$(CONFIG_RTE_LIBRTE_ICE_PMD) += ice_rxtx_vec_avx2.c +endif + include $(RTE_SDK)/mk/rte.lib.mk diff --git a/drivers/net/ice/ice_rxtx.c b/drivers/net/ice/ice_rxtx.c index 715dcad..28d5974 100644 --- a/drivers/net/ice/ice_rxtx.c +++ b/drivers/net/ice/ice_rxtx.c @@ -1505,7 +1505,8 @@ #ifdef RTE_ARCH_X86 if (dev->rx_pkt_burst == ice_recv_pkts_vec || - dev->rx_pkt_burst == ice_recv_scattered_pkts_vec) + dev->rx_pkt_burst == ice_recv_scattered_pkts_vec || + dev->rx_pkt_burst == ice_recv_pkts_vec_avx2) return ptypes; #endif @@ -2243,21 +2244,30 @@ void __attribute__((cold)) #ifdef RTE_ARCH_X86 struct ice_rx_queue *rxq; int i; + bool use_avx2 = false; if (!ice_rx_vec_dev_check(dev)) { for (i = 0; i < dev->data->nb_rx_queues; i++) { rxq = dev->data->rx_queues[i]; (void)ice_rxq_vec_setup(rxq); } + + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) + use_avx2 = true; + if (dev->data->scattered_rx) { PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx (port %d).", dev->data->port_id); dev->rx_pkt_burst = ice_recv_scattered_pkts_vec; } else { - PMD_DRV_LOG(DEBUG, "Using Vector Rx (port %d).", + PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).", + use_avx2 ? "avx2 " : "", dev->data->port_id); - dev->rx_pkt_burst = ice_recv_pkts_vec; + dev->rx_pkt_burst = use_avx2 ? + ice_recv_pkts_vec_avx2 : + ice_recv_pkts_vec; } return; diff --git a/drivers/net/ice/ice_rxtx.h b/drivers/net/ice/ice_rxtx.h index 1dde4e7..d1c9b92 100644 --- a/drivers/net/ice/ice_rxtx.h +++ b/drivers/net/ice/ice_rxtx.h @@ -179,4 +179,6 @@ uint16_t ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); uint16_t ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); +uint16_t ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); #endif /* _ICE_RXTX_H_ */ diff --git a/drivers/net/ice/ice_rxtx_vec_avx2.c b/drivers/net/ice/ice_rxtx_vec_avx2.c new file mode 100644 index 0000000..42f761d --- /dev/null +++ b/drivers/net/ice/ice_rxtx_vec_avx2.c @@ -0,0 +1,622 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2019 Intel Corporation + */ + +#include "ice_rxtx_vec_common.h" + +#include + +#ifndef __INTEL_COMPILER +#pragma GCC diagnostic ignored "-Wcast-qual" +#endif + +static inline void +ice_rxq_rearm(struct ice_rx_queue *rxq) +{ + int i; + uint16_t rx_id; + volatile union ice_rx_desc *rxdp; + struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start]; + + rxdp = rxq->rx_ring + rxq->rxrearm_start; + + /* Pull 'n' more MBUFs into the software ring */ + if (rte_mempool_get_bulk(rxq->mp, + (void *)rxep, + ICE_RXQ_REARM_THRESH) < 0) { + if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >= + rxq->nb_rx_desc) { + __m128i dma_addr0; + + dma_addr0 = _mm_setzero_si128(); + for (i = 0; i < ICE_DESCS_PER_LOOP; i++) { + rxep[i].mbuf = &rxq->fake_mbuf; + _mm_store_si128((__m128i *)&rxdp[i].read, + dma_addr0); + } + } + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += + ICE_RXQ_REARM_THRESH; + return; + } + +#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC + struct rte_mbuf *mb0, *mb1; + __m128i dma_addr0, dma_addr1; + __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, + RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 2 mbufs in one loop */ + for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) { + __m128i vaddr0, vaddr1; + + mb0 = rxep[0].mbuf; + mb1 = rxep[1].mbuf; + + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + + /* convert pa to dma_addr hdr/data */ + dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); + dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); + + /* add headroom to pa values */ + dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); + dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); + + /* flush desc with pa dma_addr */ + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); + } +#else + struct rte_mbuf *mb0, *mb1, *mb2, *mb3; + __m256i dma_addr0_1, dma_addr2_3; + __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 4 mbufs in one loop */ + for (i = 0; i < ICE_RXQ_REARM_THRESH; + i += 4, rxep += 4, rxdp += 4) { + __m128i vaddr0, vaddr1, vaddr2, vaddr3; + __m256i vaddr0_1, vaddr2_3; + + mb0 = rxep[0].mbuf; + mb1 = rxep[1].mbuf; + mb2 = rxep[2].mbuf; + mb3 = rxep[3].mbuf; + + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr); + vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr); + + /** + * merge 0 & 1, by casting 0 to 256-bit and inserting 1 + * into the high lanes. Similarly for 2 & 3 + */ + vaddr0_1 = + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0), + vaddr1, 1); + vaddr2_3 = + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2), + vaddr3, 1); + + /* convert pa to dma_addr hdr/data */ + dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1); + dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3); + + /* add headroom to pa values */ + dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room); + dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room); + + /* flush desc with pa dma_addr */ + _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1); + _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3); + } + +#endif + + rxq->rxrearm_start += ICE_RXQ_REARM_THRESH; + if (rxq->rxrearm_start >= rxq->nb_rx_desc) + rxq->rxrearm_start = 0; + + rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH; + + rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? + (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); + + /* Update the tail pointer on the NIC */ + ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id); +} + +#define PKTLEN_SHIFT 10 + +static inline uint16_t +_ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, uint8_t *split_packet) +{ +#define ICE_DESCS_PER_LOOP_AVX 8 + + const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, + 0, rxq->mbuf_initializer); + struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; + volatile union ice_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail; + const int avx_aligned = ((rxq->rx_tail & 1) == 0); + + rte_prefetch0(rxdp); + + /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */ + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX); + + /* See if we need to rearm the RX queue - gives the prefetch a bit + * of time to act + */ + if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH) + ice_rxq_rearm(rxq); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available + */ + if (!(rxdp->wb.qword1.status_error_len & + rte_cpu_to_le_32(1 << ICE_RX_DESC_STATUS_DD_S))) + return 0; + + /* constants used in processing loop */ + const __m256i crc_adjust = + _mm256_set_epi16 + (/* first descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0, /* ignore pkt_type field */ + /* second descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0 /* ignore pkt_type field */ + ); + + /* 8 packets DD mask, LSB in each 32-bit value */ + const __m256i dd_check = _mm256_set1_epi32(1); + + /* 8 packets EOP mask, second-LSB in each 32-bit value */ + const __m256i eop_check = _mm256_slli_epi32(dd_check, + ICE_RX_DESC_STATUS_EOF_S); + + /* mask to shuffle from desc. to mbuf (2 descriptors)*/ + const __m256i shuf_msk = + _mm256_set_epi8 + (/* first descriptor */ + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ + 15, 14, /* octet 15~14, 16 bits data_len */ + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ + 15, 14, /* octet 15~14, low 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF, /*pkt_type set as unknown */ + /* second descriptor */ + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ + 15, 14, /* octet 15~14, 16 bits data_len */ + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ + 15, 14, /* octet 15~14, low 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF /*pkt_type set as unknown */ + ); + /** + * compile-time check the above crc and shuffle layout is correct. + * NOTE: the first field (lowest address) is given last in set_epi + * calls above. + */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); + + /* Status/Error flag masks */ + /** + * mask everything except RSS, flow director and VLAN flags + * bit2 is for VLAN tag, bit11 for flow director indication + * bit13:12 for RSS indication. Bits 3-5 of error + * field (bits 22-24) are for IP/L4 checksum errors + */ + const __m256i flags_mask = + _mm256_set1_epi32((1 << 2) | (1 << 11) | + (3 << 12) | (7 << 22)); + /** + * data to be shuffled by result of flag mask. If VLAN bit is set, + * (bit 2), then position 4 in this array will be used in the + * destination + */ + const __m256i vlan_flags_shuf = + _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, + 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0); + /** + * data to be shuffled by result of flag mask, shifted down 11. + * If RSS/FDIR bits are set, shuffle moves appropriate flags in + * place. + */ + const __m256i rss_flags_shuf = + _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, + 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, + 0, 0, 0, 0, PKT_RX_FDIR, 0); + + /** + * data to be shuffled by the result of the flags mask shifted by 22 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + /* shift right 1 bit to make sure it not exceed 255 */ + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1, + /* second 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); + + const __m256i cksum_mask = + _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_EIP_CKSUM_BAD); + + RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */ + + uint16_t i, received; + + for (i = 0, received = 0; i < nb_pkts; + i += ICE_DESCS_PER_LOOP_AVX, + rxdp += ICE_DESCS_PER_LOOP_AVX) { + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ + _mm256_storeu_si256((void *)&rx_pkts[i], + _mm256_loadu_si256((void *)&sw_ring[i])); +#ifdef RTE_ARCH_X86_64 + _mm256_storeu_si256 + ((void *)&rx_pkts[i + 4], + _mm256_loadu_si256((void *)&sw_ring[i + 4])); +#endif + + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; +#ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC + /* for AVX we need alignment otherwise loads are not atomic */ + if (avx_aligned) { + /* load in descriptors, 2 at a time, in reverse order */ + raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6)); + rte_compiler_barrier(); + raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4)); + rte_compiler_barrier(); + raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2)); + rte_compiler_barrier(); + raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0)); + } else +#endif + { + const __m128i raw_desc7 = + _mm_load_si128((void *)(rxdp + 7)); + rte_compiler_barrier(); + const __m128i raw_desc6 = + _mm_load_si128((void *)(rxdp + 6)); + rte_compiler_barrier(); + const __m128i raw_desc5 = + _mm_load_si128((void *)(rxdp + 5)); + rte_compiler_barrier(); + const __m128i raw_desc4 = + _mm_load_si128((void *)(rxdp + 4)); + rte_compiler_barrier(); + const __m128i raw_desc3 = + _mm_load_si128((void *)(rxdp + 3)); + rte_compiler_barrier(); + const __m128i raw_desc2 = + _mm_load_si128((void *)(rxdp + 2)); + rte_compiler_barrier(); + const __m128i raw_desc1 = + _mm_load_si128((void *)(rxdp + 1)); + rte_compiler_barrier(); + const __m128i raw_desc0 = + _mm_load_si128((void *)(rxdp + 0)); + + raw_desc6_7 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc6), + raw_desc7, 1); + raw_desc4_5 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc4), + raw_desc5, 1); + raw_desc2_3 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc2), + raw_desc3, 1); + raw_desc0_1 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc0), + raw_desc1, 1); + } + + if (split_packet) { + int j; + + for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++) + rte_mbuf_prefetch_part2(rx_pkts[i + j]); + } + + /** + * convert descriptors 4-7 into mbufs, adjusting length and + * re-arranging fields. Then write into the mbuf + */ + const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, + PKTLEN_SHIFT); + const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, + PKTLEN_SHIFT); + const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, + len6_7, 0x80); + const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, + len4_5, 0x80); + __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk); + __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk); + + mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust); + mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust); + /** + * to get packet types, shift 64-bit values down 30 bits + * and so ptype is in lower 8-bits in each + */ + const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30); + const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30); + const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24); + const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8); + const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24); + const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8); + + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4); + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0); + /* merge the status bits into one register */ + const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7, + desc4_5); + + /** + * convert descriptors 0-3 into mbufs, adjusting length and + * re-arranging fields. Then write into the mbuf + */ + const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, + PKTLEN_SHIFT); + const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, + PKTLEN_SHIFT); + const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, + len2_3, 0x80); + const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, + len0_1, 0x80); + __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk); + __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk); + + mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust); + mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust); + /* get the packet types */ + const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30); + const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30); + const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24); + const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8); + const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24); + const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8); + + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4); + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0); + /* merge the status bits into one register */ + const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3, + desc0_1); + + /** + * take the two sets of status bits and merge to one + * After merge, the packets status flags are in the + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + */ + __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, + status0_3); + + /* now do flag manipulation */ + + /* get only flag/error bits we want */ + const __m256i flag_bits = + _mm256_and_si256(status0_7, flags_mask); + /* set vlan and rss flags */ + const __m256i vlan_flags = + _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits); + const __m256i rss_flags = + _mm256_shuffle_epi8(rss_flags_shuf, + _mm256_srli_epi32(flag_bits, 11)); + /** + * l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 22)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); + + /* merge flags */ + const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, + _mm256_or_si256(rss_flags, vlan_flags)); + /** + * At this point, we have the 8 sets of flags in the low 16-bits + * of each 32-bit value in vlan0. + * We want to extract these, and merge them with the mbuf init + * data so we can do a single write to the mbuf to set the flags + * and all the other initialization fields. Extracting the + * appropriate flags means that we have to do a shift and blend + * for each mbuf before we do the write. However, we can also + * add in the previously computed rx_descriptor fields to + * make a single 256-bit write per mbuf + */ + /* check the structure matches expectations */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != + offsetof(struct rte_mbuf, rearm_data) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != + RTE_ALIGN(offsetof(struct rte_mbuf, + rearm_data), + 16)); + /* build up data and do writes */ + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, + rearm6, rearm7; + rearm6 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 8), + 0x04); + rearm4 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 4), + 0x04); + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(mbuf_flags, 4), + 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + /* write to mbuf */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, + rearm6); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, + rearm4); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, + rearm2); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, + rearm0); + + /* repeat for the odd mbufs */ + const __m256i odd_flags = + _mm256_castsi128_si256 + (_mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 8), + 0x04); + rearm5 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 4), + 0x04); + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(odd_flags, 4), + 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + /* again write to mbufs */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, + rearm7); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, + rearm5); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, + rearm3); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, + rearm1); + + /* extract and record EOP bit */ + if (split_packet) { + const __m128i eop_mask = + _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S); + const __m256i eop_bits256 = _mm256_and_si256(status0_7, + eop_check); + /* pack status bits into a single 128-bit register */ + const __m128i eop_bits = + _mm_packus_epi32 + (_mm256_castsi256_si128(eop_bits256), + _mm256_extractf128_si256(eop_bits256, + 1)); + /** + * flip bits, and mask out the EOP bit, which is now + * a split-packet bit i.e. !EOP, rather than EOP one. + */ + __m128i split_bits = _mm_andnot_si128(eop_bits, + eop_mask); + /** + * eop bits are out of order, so we need to shuffle them + * back into order again. In doing so, only use low 8 + * bits, which acts like another pack instruction + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 + * [Since we use epi8, the 16-bit positions are + * multiplied by 2 in the eop_shuffle value.] + */ + __m128i eop_shuffle = + _mm_set_epi8(/* zero hi 64b */ + 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, + /* move values to lo 64b */ + 8, 0, 10, 2, + 12, 4, 14, 6); + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); + *(uint64_t *)split_packet = + _mm_cvtsi128_si64(split_bits); + split_packet += ICE_DESCS_PER_LOOP_AVX; + } + + /* perform dd_check */ + status0_7 = _mm256_and_si256(status0_7, dd_check); + status0_7 = _mm256_packs_epi32(status0_7, + _mm256_setzero_si256()); + + uint64_t burst = __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_extracti128_si256 + (status0_7, 1))); + burst += __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_castsi256_si128(status0_7))); + received += burst; + if (burst != ICE_DESCS_PER_LOOP_AVX) + break; + } + + /* update tail pointers */ + rxq->rx_tail += received; + rxq->rx_tail &= (rxq->nb_rx_desc - 1); + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ + rxq->rx_tail--; + received--; + } + rxq->rxrearm_nb += received; + return received; +} + +/** + * Notice: + * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet + */ +uint16_t +ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); +} diff --git a/drivers/net/ice/meson.build b/drivers/net/ice/meson.build index 469264d..2bec688 100644 --- a/drivers/net/ice/meson.build +++ b/drivers/net/ice/meson.build @@ -14,4 +14,19 @@ includes += include_directories('base') if arch_subdir == 'x86' sources += files('ice_rxtx_vec_sse.c') + + # compile AVX2 version if either: + # a. we have AVX supported in minimum instruction set baseline + # b. it's not minimum instruction set, but supported by compiler + if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2') + sources += files('ice_rxtx_vec_avx2.c') + elif cc.has_argument('-mavx2') + ice_avx2_lib = static_library('ice_avx2_lib', + 'ice_rxtx_vec_avx2.c', + dependencies: [static_rte_ethdev, + static_rte_kvargs, static_rte_hash], + include_directories: includes, + c_args: [cflags, '-mavx2']) + objs += ice_avx2_lib.extract_objects('ice_rxtx_vec_avx2.c') + endif endif -- 1.9.3