From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from dpdk.org (dpdk.org [92.243.14.124]) by inbox.dpdk.org (Postfix) with ESMTP id 71BE2A04DC; Sat, 31 Oct 2020 19:22:29 +0100 (CET) Received: from [92.243.14.124] (localhost [127.0.0.1]) by dpdk.org (Postfix) with ESMTP id 3CC507CC8; Sat, 31 Oct 2020 19:17:05 +0100 (CET) Received: from mga11.intel.com (mga11.intel.com [192.55.52.93]) by dpdk.org (Postfix) with ESMTP id 4CE914C8F for ; Sat, 31 Oct 2020 19:16:30 +0100 (CET) IronPort-SDR: pBMgkczTle0DPklXed9UMprKMwJHs3+DX5E4RgaVtHfLtjq420ceOQHJh1Oh0Kwy6e+hdulH2f KHUidl+FlitA== X-IronPort-AV: E=McAfee;i="6000,8403,9791"; a="165244466" X-IronPort-AV: E=Sophos;i="5.77,438,1596524400"; d="scan'208";a="165244466" X-Amp-Result: SKIPPED(no attachment in message) X-Amp-File-Uploaded: False Received: from orsmga006.jf.intel.com ([10.7.209.51]) by fmsmga102.fm.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 31 Oct 2020 11:16:29 -0700 IronPort-SDR: g3Pg7rcrUFrX+coOpGqyTn9d+SPKDuk3XH/pHbTmb+J/lqKyxaJS5DfUXHZcishwQXmScVkLDL 7dxIHAJkCtLg== X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.77,438,1596524400"; d="scan'208";a="324404286" Received: from txasoft-yocto.an.intel.com ([10.123.72.192]) by orsmga006.jf.intel.com with ESMTP; 31 Oct 2020 11:16:28 -0700 From: Timothy McDaniel To: Cc: dev@dpdk.org, erik.g.carrillo@intel.com, gage.eads@intel.com, harry.van.haaren@intel.com, jerinj@marvell.com, thomas@monjalon.net Date: Sat, 31 Oct 2020 13:17:55 -0500 Message-Id: <1604168282-30079-18-git-send-email-timothy.mcdaniel@intel.com> X-Mailer: git-send-email 1.7.10 In-Reply-To: <1604168282-30079-1-git-send-email-timothy.mcdaniel@intel.com> References: <20200612212434.6852-2-timothy.mcdaniel@intel.com> <1604168282-30079-1-git-send-email-timothy.mcdaniel@intel.com> Subject: [dpdk-dev] [PATCH v14 17/23] event/dlb: add enqueue and its burst variants X-BeenThere: dev@dpdk.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: DPDK patches and discussions List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: dev-bounces@dpdk.org Sender: "dev" Add support for enqueue and its variants. Signed-off-by: Timothy McDaniel Reviewed-by: Gage Eads --- doc/guides/eventdevs/dlb.rst | 163 ++++++++++++- drivers/event/dlb/dlb.c | 567 +++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 729 insertions(+), 1 deletion(-) diff --git a/doc/guides/eventdevs/dlb.rst b/doc/guides/eventdevs/dlb.rst index f106a07..ae126c4 100644 --- a/doc/guides/eventdevs/dlb.rst +++ b/doc/guides/eventdevs/dlb.rst @@ -118,7 +118,7 @@ the DLB does not limit the number of flows a queue can track. In the DLB, all load-balanced queues can use the full 16-bit flow ID range. Load-balanced and Directed Ports -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DLB ports come in two flavors: load-balanced and directed. The eventdev API does not have the same concept, but it has a similar one: ports and queues that @@ -157,3 +157,164 @@ type (atomic, ordered, or parallel) is not preserved, and an event's sched_type will be set to ``RTE_SCHED_TYPE_ATOMIC`` when it is dequeued from a directed port. +Flow ID +~~~~~~~ + +The flow ID field is not preserved in the event when it is scheduled in the +DLB, because the DLB hardware control word format does not have sufficient +space to preserve every event field. As a result, the flow ID specified with +the enqueued event will not be in the dequeued event. If this field is +required, the application should pass it through an out-of-band path (for +example in the mbuf's udata64 field, if the event points to an mbuf) or +reconstruct the flow ID after receiving the event. + +Also, the DLB hardware control word supports a 16-bit flow ID. Since struct +rte_event's flow_id field is 20 bits, the DLB PMD drops the most significant +four bits from the event's flow ID. + +Hardware Credits +~~~~~~~~~~~~~~~~ + +DLB uses a hardware credit scheme to prevent software from overflowing hardware +event storage, with each unit of storage represented by a credit. A port spends +a credit to enqueue an event, and hardware refills the ports with credits as the +events are scheduled to ports. Refills come from credit pools, and each port is +a member of a load-balanced credit pool and a directed credit pool. The +load-balanced credits are used to enqueue to load-balanced queues, and directed +credits are used for directed queues. + +A DLB eventdev contains one load-balanced and one directed credit pool. These +pools' sizes are controlled by the nb_events_limit field in struct +rte_event_dev_config. The load-balanced pool is sized to contain +nb_events_limit credits, and the directed pool is sized to contain +nb_events_limit/4 credits. The directed pool size can be overridden with the +num_dir_credits vdev argument, like so: + + .. code-block:: console + + --vdev=dlb1_event,num_dir_credits= + +This can be used if the default allocation is too low or too high for the +specific application needs. The PMD also supports a vdev arg that limits the +max_num_events reported by rte_event_dev_info_get(): + + .. code-block:: console + + --vdev=dlb1_event,max_num_events= + +By default, max_num_events is reported as the total available load-balanced +credits. If multiple DLB-based applications are being used, it may be desirable +to control how many load-balanced credits each application uses, particularly +when application(s) are written to configure nb_events_limit equal to the +reported max_num_events. + +Each port is a member of both credit pools. A port's credit allocation is +defined by its low watermark, high watermark, and refill quanta. These three +parameters are calculated by the dlb PMD like so: + +- The load-balanced high watermark is set to the port's enqueue_depth. + The directed high watermark is set to the minimum of the enqueue_depth and + the directed pool size divided by the total number of ports. +- The refill quanta is set to half the high watermark. +- The low watermark is set to the minimum of 16 and the refill quanta. + +When the eventdev is started, each port is pre-allocated a high watermark's +worth of credits. For example, if an eventdev contains four ports with enqueue +depths of 32 and a load-balanced credit pool size of 4096, each port will start +with 32 load-balanced credits, and there will be 3968 credits available to +replenish the ports. Thus, a single port is not capable of enqueueing up to the +nb_events_limit (without any events being dequeued), since the other ports are +retaining their initial credit allocation; in short, all ports must enqueue in +order to reach the limit. + +If a port attempts to enqueue and has no credits available, the enqueue +operation will fail and the application must retry the enqueue. Credits are +replenished asynchronously by the DLB hardware. + +Software Credits +~~~~~~~~~~~~~~~~ + +The DLB is a "closed system" event dev, and the DLB PMD layers a software +credit scheme on top of the hardware credit scheme in order to comply with +the per-port backpressure described in the eventdev API. + +The DLB's hardware scheme is local to a queue/pipeline stage: a port spends a +credit when it enqueues to a queue, and credits are later replenished after the +events are dequeued and released. + +In the software credit scheme, a credit is consumed when a new (.op = +RTE_EVENT_OP_NEW) event is injected into the system, and the credit is +replenished when the event is released from the system (either explicitly with +RTE_EVENT_OP_RELEASE or implicitly in dequeue_burst()). + +In this model, an event is "in the system" from its first enqueue into eventdev +until it is last dequeued. If the event goes through multiple event queues, it +is still considered "in the system" while a worker thread is processing it. + +A port will fail to enqueue if the number of events in the system exceeds its +``new_event_threshold`` (specified at port setup time). A port will also fail +to enqueue if it lacks enough hardware credits to enqueue; load-balanced +credits are used to enqueue to a load-balanced queue, and directed credits are +used to enqueue to a directed queue. + +The out-of-credit situations are typically transient, and an eventdev +application using the DLB ought to retry its enqueues if they fail. +If enqueue fails, DLB PMD sets rte_errno as follows: + +- -ENOSPC: Credit exhaustion (either hardware or software) +- -EINVAL: Invalid argument, such as port ID, queue ID, or sched_type. + +Depending on the pipeline the application has constructed, it's possible to +enter a credit deadlock scenario wherein the worker thread lacks the credit +to enqueue an event, and it must dequeue an event before it can recover the +credit. If the worker thread retries its enqueue indefinitely, it will not +make forward progress. Such deadlock is possible if the application has event +"loops", in which an event in dequeued from queue A and later enqueued back to +queue A. + +Due to this, workers should stop retrying after a time, release the events it +is attempting to enqueue, and dequeue more events. It is important that the +worker release the events and don't simply set them aside to retry the enqueue +again later, because the port has limited history list size (by default, twice +the port's dequeue_depth). + +Priority +~~~~~~~~ + +The DLB supports event priority and per-port queue service priority, as +described in the eventdev header file. The DLB does not support 'global' event +queue priority established at queue creation time. + +DLB supports 8 event and queue service priority levels. For both priority +types, the PMD uses the upper three bits of the priority field to determine the +DLB priority, discarding the 5 least significant bits. The 5 least significant +event priority bits are not preserved when an event is enqueued. + +Atomic Inflights Allocation +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In the last stage prior to scheduling an atomic event to a CQ, DLB holds the +inflight event in a temporary buffer that is divided among load-balanced +queues. If a queue's atomic buffer storage fills up, this can result in +head-of-line-blocking. For example: + +- An LDB queue allocated N atomic buffer entries +- All N entries are filled with events from flow X, which is pinned to CQ 0. + +Until CQ 0 releases 1+ events, no other atomic flows for that LDB queue can be +scheduled. The likelihood of this case depends on the eventdev configuration, +traffic behavior, event processing latency, potential for a worker to be +interrupted or otherwise delayed, etc. + +By default, the PMD allocates 16 buffer entries for each load-balanced queue, +which provides an even division across all 128 queues but potentially wastes +buffer space (e.g. if not all queues are used, or aren't used for atomic +scheduling). + +The PMD provides a dev arg to override the default per-queue allocation. To +increase a vdev's per-queue atomic-inflight allocation to (for example) 64: + + .. code-block:: console + + --vdev=dlb1_event,atm_inflights=64 + diff --git a/drivers/event/dlb/dlb.c b/drivers/event/dlb/dlb.c index 780ff7d..f60a2e2 100644 --- a/drivers/event/dlb/dlb.c +++ b/drivers/event/dlb/dlb.c @@ -2135,6 +2135,568 @@ dlb_eventdev_start(struct rte_eventdev *dev) return 0; } +static inline int +dlb_check_enqueue_sw_credits(struct dlb_eventdev *dlb, + struct dlb_eventdev_port *ev_port) +{ + uint32_t sw_inflights = __atomic_load_n(&dlb->inflights, + __ATOMIC_SEQ_CST); + const int num = 1; + + if (unlikely(ev_port->inflight_max < sw_inflights)) { + DLB_INC_STAT(ev_port->stats.traffic.tx_nospc_inflight_max, 1); + rte_errno = -ENOSPC; + return 1; + } + + if (ev_port->inflight_credits < num) { + /* check if event enqueue brings ev_port over max threshold */ + uint32_t credit_update_quanta = ev_port->credit_update_quanta; + + if (sw_inflights + credit_update_quanta > + dlb->new_event_limit) { + DLB_INC_STAT( + ev_port->stats.traffic.tx_nospc_new_event_limit, + 1); + rte_errno = -ENOSPC; + return 1; + } + + __atomic_fetch_add(&dlb->inflights, credit_update_quanta, + __ATOMIC_SEQ_CST); + ev_port->inflight_credits += (credit_update_quanta); + + if (ev_port->inflight_credits < num) { + DLB_INC_STAT( + ev_port->stats.traffic.tx_nospc_inflight_credits, + 1); + rte_errno = -ENOSPC; + return 1; + } + } + + return 0; +} + +static inline void +dlb_replenish_sw_credits(struct dlb_eventdev *dlb, + struct dlb_eventdev_port *ev_port) +{ + uint16_t quanta = ev_port->credit_update_quanta; + + if (ev_port->inflight_credits >= quanta * 2) { + /* Replenish credits, saving one quanta for enqueues */ + uint16_t val = ev_port->inflight_credits - quanta; + + __atomic_fetch_sub(&dlb->inflights, val, __ATOMIC_SEQ_CST); + ev_port->inflight_credits -= val; + } +} + +static __rte_always_inline uint16_t +dlb_read_pc(struct process_local_port_data *port_data, bool ldb) +{ + volatile uint16_t *popcount; + + if (ldb) + popcount = port_data->ldb_popcount; + else + popcount = port_data->dir_popcount; + + return *popcount; +} + +static inline int +dlb_check_enqueue_hw_ldb_credits(struct dlb_port *qm_port, + struct process_local_port_data *port_data) +{ + if (unlikely(qm_port->cached_ldb_credits == 0)) { + uint16_t pc; + + pc = dlb_read_pc(port_data, true); + + qm_port->cached_ldb_credits = pc - + qm_port->ldb_pushcount_at_credit_expiry; + if (unlikely(qm_port->cached_ldb_credits == 0)) { + DLB_INC_STAT( + qm_port->ev_port->stats.traffic.tx_nospc_ldb_hw_credits, + 1); + + DLB_LOG_DBG("ldb credits exhausted\n"); + return 1; + } + qm_port->ldb_pushcount_at_credit_expiry += + qm_port->cached_ldb_credits; + } + + return 0; +} + +static inline int +dlb_check_enqueue_hw_dir_credits(struct dlb_port *qm_port, + struct process_local_port_data *port_data) +{ + if (unlikely(qm_port->cached_dir_credits == 0)) { + uint16_t pc; + + pc = dlb_read_pc(port_data, false); + + qm_port->cached_dir_credits = pc - + qm_port->dir_pushcount_at_credit_expiry; + + if (unlikely(qm_port->cached_dir_credits == 0)) { + DLB_INC_STAT( + qm_port->ev_port->stats.traffic.tx_nospc_dir_hw_credits, + 1); + + DLB_LOG_DBG("dir credits exhausted\n"); + return 1; + } + qm_port->dir_pushcount_at_credit_expiry += + qm_port->cached_dir_credits; + } + + return 0; +} + +static inline int +dlb_event_enqueue_prep(struct dlb_eventdev_port *ev_port, + struct dlb_port *qm_port, + const struct rte_event ev[], + struct process_local_port_data *port_data, + uint8_t *sched_type, + uint8_t *queue_id) +{ + struct dlb_eventdev *dlb = ev_port->dlb; + struct dlb_eventdev_queue *ev_queue; + uint16_t *cached_credits = NULL; + struct dlb_queue *qm_queue; + + ev_queue = &dlb->ev_queues[ev->queue_id]; + qm_queue = &ev_queue->qm_queue; + *queue_id = qm_queue->id; + + /* Ignore sched_type and hardware credits on release events */ + if (ev->op == RTE_EVENT_OP_RELEASE) + goto op_check; + + if (!qm_queue->is_directed) { + /* Load balanced destination queue */ + + if (dlb_check_enqueue_hw_ldb_credits(qm_port, port_data)) { + rte_errno = -ENOSPC; + return 1; + } + cached_credits = &qm_port->cached_ldb_credits; + + switch (ev->sched_type) { + case RTE_SCHED_TYPE_ORDERED: + DLB_LOG_DBG("dlb: put_qe: RTE_SCHED_TYPE_ORDERED\n"); + if (qm_queue->sched_type != RTE_SCHED_TYPE_ORDERED) { + DLB_LOG_ERR("dlb: tried to send ordered event to unordered queue %d\n", + *queue_id); + rte_errno = -EINVAL; + return 1; + } + *sched_type = DLB_SCHED_ORDERED; + break; + case RTE_SCHED_TYPE_ATOMIC: + DLB_LOG_DBG("dlb: put_qe: RTE_SCHED_TYPE_ATOMIC\n"); + *sched_type = DLB_SCHED_ATOMIC; + break; + case RTE_SCHED_TYPE_PARALLEL: + DLB_LOG_DBG("dlb: put_qe: RTE_SCHED_TYPE_PARALLEL\n"); + if (qm_queue->sched_type == RTE_SCHED_TYPE_ORDERED) + *sched_type = DLB_SCHED_ORDERED; + else + *sched_type = DLB_SCHED_UNORDERED; + break; + default: + DLB_LOG_ERR("Unsupported LDB sched type in put_qe\n"); + DLB_INC_STAT(ev_port->stats.tx_invalid, 1); + rte_errno = -EINVAL; + return 1; + } + } else { + /* Directed destination queue */ + + if (dlb_check_enqueue_hw_dir_credits(qm_port, port_data)) { + rte_errno = -ENOSPC; + return 1; + } + cached_credits = &qm_port->cached_dir_credits; + + DLB_LOG_DBG("dlb: put_qe: RTE_SCHED_TYPE_DIRECTED\n"); + + *sched_type = DLB_SCHED_DIRECTED; + } + +op_check: + switch (ev->op) { + case RTE_EVENT_OP_NEW: + /* Check that a sw credit is available */ + if (dlb_check_enqueue_sw_credits(dlb, ev_port)) { + rte_errno = -ENOSPC; + return 1; + } + ev_port->inflight_credits--; + (*cached_credits)--; + break; + case RTE_EVENT_OP_FORWARD: + /* Check for outstanding_releases underflow. If this occurs, + * the application is not using the EVENT_OPs correctly; for + * example, forwarding or releasing events that were not + * dequeued. + */ + RTE_ASSERT(ev_port->outstanding_releases > 0); + ev_port->outstanding_releases--; + qm_port->issued_releases++; + (*cached_credits)--; + break; + case RTE_EVENT_OP_RELEASE: + ev_port->inflight_credits++; + /* Check for outstanding_releases underflow. If this occurs, + * the application is not using the EVENT_OPs correctly; for + * example, forwarding or releasing events that were not + * dequeued. + */ + RTE_ASSERT(ev_port->outstanding_releases > 0); + ev_port->outstanding_releases--; + qm_port->issued_releases++; + /* Replenish s/w credits if enough are cached */ + dlb_replenish_sw_credits(dlb, ev_port); + break; + } + + DLB_INC_STAT(ev_port->stats.tx_op_cnt[ev->op], 1); + DLB_INC_STAT(ev_port->stats.traffic.tx_ok, 1); + +#ifndef RTE_LIBRTE_PMD_DLB_QUELL_STATS + if (ev->op != RTE_EVENT_OP_RELEASE) { + DLB_INC_STAT(ev_port->stats.enq_ok[ev->queue_id], 1); + DLB_INC_STAT(ev_port->stats.tx_sched_cnt[*sched_type], 1); + } +#endif + + return 0; +} + +static uint8_t cmd_byte_map[NUM_DLB_PORT_TYPES][DLB_NUM_HW_SCHED_TYPES] = { + { + /* Load-balanced cmd bytes */ + [RTE_EVENT_OP_NEW] = DLB_NEW_CMD_BYTE, + [RTE_EVENT_OP_FORWARD] = DLB_FWD_CMD_BYTE, + [RTE_EVENT_OP_RELEASE] = DLB_COMP_CMD_BYTE, + }, + { + /* Directed cmd bytes */ + [RTE_EVENT_OP_NEW] = DLB_NEW_CMD_BYTE, + [RTE_EVENT_OP_FORWARD] = DLB_NEW_CMD_BYTE, + [RTE_EVENT_OP_RELEASE] = DLB_NOOP_CMD_BYTE, + }, +}; + +static inline void +dlb_event_build_hcws(struct dlb_port *qm_port, + const struct rte_event ev[], + int num, + uint8_t *sched_type, + uint8_t *queue_id) +{ + struct dlb_enqueue_qe *qe; + uint16_t sched_word[4]; + __m128i sse_qe[2]; + int i; + + qe = qm_port->qe4; + + sse_qe[0] = _mm_setzero_si128(); + sse_qe[1] = _mm_setzero_si128(); + + switch (num) { + case 4: + /* Construct the metadata portion of two HCWs in one 128b SSE + * register. HCW metadata is constructed in the SSE registers + * like so: + * sse_qe[0][63:0]: qe[0]'s metadata + * sse_qe[0][127:64]: qe[1]'s metadata + * sse_qe[1][63:0]: qe[2]'s metadata + * sse_qe[1][127:64]: qe[3]'s metadata + */ + + /* Convert the event operation into a command byte and store it + * in the metadata: + * sse_qe[0][63:56] = cmd_byte_map[is_directed][ev[0].op] + * sse_qe[0][127:120] = cmd_byte_map[is_directed][ev[1].op] + * sse_qe[1][63:56] = cmd_byte_map[is_directed][ev[2].op] + * sse_qe[1][127:120] = cmd_byte_map[is_directed][ev[3].op] + */ +#define DLB_QE_CMD_BYTE 7 + sse_qe[0] = _mm_insert_epi8(sse_qe[0], + cmd_byte_map[qm_port->is_directed][ev[0].op], + DLB_QE_CMD_BYTE); + sse_qe[0] = _mm_insert_epi8(sse_qe[0], + cmd_byte_map[qm_port->is_directed][ev[1].op], + DLB_QE_CMD_BYTE + 8); + sse_qe[1] = _mm_insert_epi8(sse_qe[1], + cmd_byte_map[qm_port->is_directed][ev[2].op], + DLB_QE_CMD_BYTE); + sse_qe[1] = _mm_insert_epi8(sse_qe[1], + cmd_byte_map[qm_port->is_directed][ev[3].op], + DLB_QE_CMD_BYTE + 8); + + /* Store priority, scheduling type, and queue ID in the sched + * word array because these values are re-used when the + * destination is a directed queue. + */ + sched_word[0] = EV_TO_DLB_PRIO(ev[0].priority) << 10 | + sched_type[0] << 8 | + queue_id[0]; + sched_word[1] = EV_TO_DLB_PRIO(ev[1].priority) << 10 | + sched_type[1] << 8 | + queue_id[1]; + sched_word[2] = EV_TO_DLB_PRIO(ev[2].priority) << 10 | + sched_type[2] << 8 | + queue_id[2]; + sched_word[3] = EV_TO_DLB_PRIO(ev[3].priority) << 10 | + sched_type[3] << 8 | + queue_id[3]; + + /* Store the event priority, scheduling type, and queue ID in + * the metadata: + * sse_qe[0][31:16] = sched_word[0] + * sse_qe[0][95:80] = sched_word[1] + * sse_qe[1][31:16] = sched_word[2] + * sse_qe[1][95:80] = sched_word[3] + */ +#define DLB_QE_QID_SCHED_WORD 1 + sse_qe[0] = _mm_insert_epi16(sse_qe[0], + sched_word[0], + DLB_QE_QID_SCHED_WORD); + sse_qe[0] = _mm_insert_epi16(sse_qe[0], + sched_word[1], + DLB_QE_QID_SCHED_WORD + 4); + sse_qe[1] = _mm_insert_epi16(sse_qe[1], + sched_word[2], + DLB_QE_QID_SCHED_WORD); + sse_qe[1] = _mm_insert_epi16(sse_qe[1], + sched_word[3], + DLB_QE_QID_SCHED_WORD + 4); + + /* If the destination is a load-balanced queue, store the lock + * ID. If it is a directed queue, DLB places this field in + * bytes 10-11 of the received QE, so we format it accordingly: + * sse_qe[0][47:32] = dir queue ? sched_word[0] : flow_id[0] + * sse_qe[0][111:96] = dir queue ? sched_word[1] : flow_id[1] + * sse_qe[1][47:32] = dir queue ? sched_word[2] : flow_id[2] + * sse_qe[1][111:96] = dir queue ? sched_word[3] : flow_id[3] + */ +#define DLB_QE_LOCK_ID_WORD 2 + sse_qe[0] = _mm_insert_epi16(sse_qe[0], + (sched_type[0] == DLB_SCHED_DIRECTED) ? + sched_word[0] : ev[0].flow_id, + DLB_QE_LOCK_ID_WORD); + sse_qe[0] = _mm_insert_epi16(sse_qe[0], + (sched_type[1] == DLB_SCHED_DIRECTED) ? + sched_word[1] : ev[1].flow_id, + DLB_QE_LOCK_ID_WORD + 4); + sse_qe[1] = _mm_insert_epi16(sse_qe[1], + (sched_type[2] == DLB_SCHED_DIRECTED) ? + sched_word[2] : ev[2].flow_id, + DLB_QE_LOCK_ID_WORD); + sse_qe[1] = _mm_insert_epi16(sse_qe[1], + (sched_type[3] == DLB_SCHED_DIRECTED) ? + sched_word[3] : ev[3].flow_id, + DLB_QE_LOCK_ID_WORD + 4); + + /* Store the event type and sub event type in the metadata: + * sse_qe[0][15:0] = flow_id[0] + * sse_qe[0][79:64] = flow_id[1] + * sse_qe[1][15:0] = flow_id[2] + * sse_qe[1][79:64] = flow_id[3] + */ +#define DLB_QE_EV_TYPE_WORD 0 + sse_qe[0] = _mm_insert_epi16(sse_qe[0], + ev[0].sub_event_type << 8 | + ev[0].event_type, + DLB_QE_EV_TYPE_WORD); + sse_qe[0] = _mm_insert_epi16(sse_qe[0], + ev[1].sub_event_type << 8 | + ev[1].event_type, + DLB_QE_EV_TYPE_WORD + 4); + sse_qe[1] = _mm_insert_epi16(sse_qe[1], + ev[2].sub_event_type << 8 | + ev[2].event_type, + DLB_QE_EV_TYPE_WORD); + sse_qe[1] = _mm_insert_epi16(sse_qe[1], + ev[3].sub_event_type << 8 | + ev[3].event_type, + DLB_QE_EV_TYPE_WORD + 4); + + /* Store the metadata to memory (use the double-precision + * _mm_storeh_pd because there is no integer function for + * storing the upper 64b): + * qe[0] metadata = sse_qe[0][63:0] + * qe[1] metadata = sse_qe[0][127:64] + * qe[2] metadata = sse_qe[1][63:0] + * qe[3] metadata = sse_qe[1][127:64] + */ + _mm_storel_epi64((__m128i *)&qe[0].u.opaque_data, sse_qe[0]); + _mm_storeh_pd((double *)&qe[1].u.opaque_data, + (__m128d) sse_qe[0]); + _mm_storel_epi64((__m128i *)&qe[2].u.opaque_data, sse_qe[1]); + _mm_storeh_pd((double *)&qe[3].u.opaque_data, + (__m128d) sse_qe[1]); + + qe[0].data = ev[0].u64; + qe[1].data = ev[1].u64; + qe[2].data = ev[2].u64; + qe[3].data = ev[3].u64; + + break; + case 3: + case 2: + case 1: + for (i = 0; i < num; i++) { + qe[i].cmd_byte = + cmd_byte_map[qm_port->is_directed][ev[i].op]; + qe[i].sched_type = sched_type[i]; + qe[i].data = ev[i].u64; + qe[i].qid = queue_id[i]; + qe[i].priority = EV_TO_DLB_PRIO(ev[i].priority); + qe[i].lock_id = ev[i].flow_id; + if (sched_type[i] == DLB_SCHED_DIRECTED) { + struct dlb_msg_info *info = + (struct dlb_msg_info *)&qe[i].lock_id; + + info->qid = queue_id[i]; + info->sched_type = DLB_SCHED_DIRECTED; + info->priority = qe[i].priority; + } + qe[i].u.event_type.major = ev[i].event_type; + qe[i].u.event_type.sub = ev[i].sub_event_type; + } + break; + case 0: + break; + } +} + +static __rte_always_inline void +dlb_pp_write(struct dlb_enqueue_qe *qe4, + struct process_local_port_data *port_data) +{ + dlb_movdir64b(port_data->pp_addr, qe4); +} + +static inline void +dlb_hw_do_enqueue(struct dlb_port *qm_port, + bool do_sfence, + struct process_local_port_data *port_data) +{ + DLB_LOG_DBG("dlb: Flushing QE(s) to DLB\n"); + + /* Since MOVDIR64B is weakly-ordered, use an SFENCE to ensure that + * application writes complete before enqueueing the release HCW. + */ + if (do_sfence) + rte_wmb(); + + dlb_pp_write(qm_port->qe4, port_data); +} + +static inline uint16_t +__dlb_event_enqueue_burst(void *event_port, + const struct rte_event events[], + uint16_t num) +{ + struct dlb_eventdev_port *ev_port = event_port; + struct dlb_port *qm_port = &ev_port->qm_port; + struct process_local_port_data *port_data; + int i; + + RTE_ASSERT(ev_port->enq_configured); + RTE_ASSERT(events != NULL); + + rte_errno = 0; + i = 0; + + port_data = &dlb_port[qm_port->id][PORT_TYPE(qm_port)]; + + while (i < num) { + uint8_t sched_types[DLB_NUM_QES_PER_CACHE_LINE]; + uint8_t queue_ids[DLB_NUM_QES_PER_CACHE_LINE]; + int pop_offs = 0; + int j = 0; + + memset(qm_port->qe4, + 0, + DLB_NUM_QES_PER_CACHE_LINE * + sizeof(struct dlb_enqueue_qe)); + + for (; j < DLB_NUM_QES_PER_CACHE_LINE && (i + j) < num; j++) { + const struct rte_event *ev = &events[i + j]; + + if (dlb_event_enqueue_prep(ev_port, qm_port, ev, + port_data, &sched_types[j], + &queue_ids[j])) + break; + } + + if (j == 0) + break; + + dlb_event_build_hcws(qm_port, &events[i], j - pop_offs, + sched_types, queue_ids); + + dlb_hw_do_enqueue(qm_port, i == 0, port_data); + + /* Don't include the token pop QE in the enqueue count */ + i += j - pop_offs; + + /* Don't interpret j < DLB_NUM_... as out-of-credits if + * pop_offs != 0 + */ + if (j < DLB_NUM_QES_PER_CACHE_LINE && pop_offs == 0) + break; + } + + RTE_ASSERT(!((i == 0 && rte_errno != -ENOSPC))); + + return i; +} + +static inline uint16_t +dlb_event_enqueue_burst(void *event_port, + const struct rte_event events[], + uint16_t num) +{ + return __dlb_event_enqueue_burst(event_port, events, num); +} + +static inline uint16_t +dlb_event_enqueue(void *event_port, + const struct rte_event events[]) +{ + return __dlb_event_enqueue_burst(event_port, events, 1); +} + +static uint16_t +dlb_event_enqueue_new_burst(void *event_port, + const struct rte_event events[], + uint16_t num) +{ + return __dlb_event_enqueue_burst(event_port, events, num); +} + +static uint16_t +dlb_event_enqueue_forward_burst(void *event_port, + const struct rte_event events[], + uint16_t num) +{ + return __dlb_event_enqueue_burst(event_port, events, num); +} + void dlb_entry_points_init(struct rte_eventdev *dev) { @@ -2159,6 +2721,11 @@ dlb_entry_points_init(struct rte_eventdev *dev) /* Expose PMD's eventdev interface */ dev->dev_ops = &dlb_eventdev_entry_ops; + + dev->enqueue = dlb_event_enqueue; + dev->enqueue_burst = dlb_event_enqueue_burst; + dev->enqueue_new_burst = dlb_event_enqueue_new_burst; + dev->enqueue_forward_burst = dlb_event_enqueue_forward_burst; } int -- 2.6.4