* [dpdk-dev] [PATCH] net/iavf: enable AVX2 for iavf
@ 2019-09-04 7:21 Leyi Rong
0 siblings, 0 replies; 3+ messages in thread
From: Leyi Rong @ 2019-09-04 7:21 UTC (permalink / raw)
To: wenzhuo.lu, qi.z.zhang, xiaolong.ye; +Cc: dev, Leyi Rong
This patch enables AVX data path for iavf PMD.
Signed-off-by: Leyi Rong <leyi.rong@intel.com>
---
drivers/net/iavf/Makefile | 21 +
drivers/net/iavf/iavf_rxtx.c | 62 +-
drivers/net/iavf/iavf_rxtx.h | 10 +
drivers/net/iavf/iavf_rxtx_vec_avx2.c | 867 ++++++++++++++++++++++++
drivers/net/iavf/iavf_rxtx_vec_common.h | 72 ++
drivers/net/iavf/iavf_rxtx_vec_sse.c | 12 +
drivers/net/iavf/meson.build | 17 +
7 files changed, 1041 insertions(+), 20 deletions(-)
create mode 100644 drivers/net/iavf/iavf_rxtx_vec_avx2.c
diff --git a/drivers/net/iavf/Makefile b/drivers/net/iavf/Makefile
index cd74e14ab..cf0ed99f0 100644
--- a/drivers/net/iavf/Makefile
+++ b/drivers/net/iavf/Makefile
@@ -48,4 +48,25 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y)
SRCS-$(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR) += iavf_rxtx_vec_sse.c
endif
+ifeq ($(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR), y)
+ ifeq ($(findstring RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2)
+ CC_AVX2_SUPPORT=1
+ else
+ CC_AVX2_SUPPORT=\
+ $(shell $(CC) -march=core-avx2 -dM -E - </dev/null 2>&1 | \
+ grep -q AVX2 && echo 1)
+ ifeq ($(CC_AVX2_SUPPORT), 1)
+ ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y)
+ CFLAGS_iavf_rxtx_vec_avx2.o += -march=core-avx2
+ else
+ CFLAGS_iavf_rxtx_vec_avx2.o += -mavx2
+ endif
+ endif
+ endif
+endif
+
+ifeq ($(CC_AVX2_SUPPORT), 1)
+ SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_rxtx_vec_avx2.c
+endif
+
include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c
index 22d7bb612..2eb496d5f 100644
--- a/drivers/net/iavf/iavf_rxtx.c
+++ b/drivers/net/iavf/iavf_rxtx.c
@@ -1743,23 +1743,36 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_rx_queue *rxq;
int i;
+ bool use_avx2 = false;
- if (adapter->rx_vec_allowed) {
- if (dev->data->scattered_rx) {
- PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback"
- " (port=%d).", dev->data->port_id);
- dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec;
- } else {
- PMD_DRV_LOG(DEBUG, "Using Vector Rx callback"
- " (port=%d).", dev->data->port_id);
- dev->rx_pkt_burst = iavf_recv_pkts_vec;
- }
+ if (!iavf_rx_vec_dev_check(dev)) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
- if (!rxq)
- continue;
- iavf_rxq_vec_setup(rxq);
+ (void)iavf_rxq_vec_setup(rxq);
}
+
+ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+ rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
+ use_avx2 = true;
+
+ if (dev->data->scattered_rx) {
+ PMD_DRV_LOG(DEBUG,
+ "Using %sVector Scattered Rx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+ dev->rx_pkt_burst = use_avx2 ?
+ iavf_recv_scattered_pkts_vec_avx2 :
+ iavf_recv_scattered_pkts_vec;
+ } else {
+ PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+ dev->rx_pkt_burst = use_avx2 ?
+ iavf_recv_pkts_vec_avx2 :
+ iavf_recv_pkts_vec;
+ }
+
+ return;
} else if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
dev->data->port_id);
@@ -1779,22 +1792,31 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
void
iavf_set_tx_function(struct rte_eth_dev *dev)
{
- struct iavf_adapter *adapter =
- IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_tx_queue *txq;
int i;
+ bool use_avx2 = false;
- if (adapter->tx_vec_allowed) {
- PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).",
- dev->data->port_id);
- dev->tx_pkt_burst = iavf_xmit_pkts_vec;
- dev->tx_pkt_prepare = NULL;
+ if (!iavf_tx_vec_dev_check(dev)) {
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
iavf_txq_vec_setup(txq);
}
+
+ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+ rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
+ use_avx2 = true;
+
+ PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+ dev->tx_pkt_burst = use_avx2 ?
+ iavf_xmit_pkts_vec_avx2 :
+ iavf_xmit_pkts_vec;
+ dev->tx_pkt_prepare = NULL;
+
+ return;
} else {
PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
dev->data->port_id);
diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h
index c86720bda..7dde392bf 100644
--- a/drivers/net/iavf/iavf_rxtx.h
+++ b/drivers/net/iavf/iavf_rxtx.h
@@ -19,6 +19,7 @@
/* used for Vector PMD */
#define IAVF_VPMD_RX_MAX_BURST 32
#define IAVF_VPMD_TX_MAX_BURST 32
+#define IAVF_RXQ_REARM_THRESH 32
#define IAVF_VPMD_DESCS_PER_LOOP 4
#define IAVF_VPMD_TX_MAX_FREE_BUF 64
@@ -200,6 +201,15 @@ uint16_t iavf_recv_scattered_pkts_vec(void *rx_queue,
uint16_t nb_pkts);
uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
+uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
+uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
+uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+int iavf_rx_vec_dev_check(struct rte_eth_dev *dev);
+int iavf_tx_vec_dev_check(struct rte_eth_dev *dev);
int iavf_rxq_vec_setup(struct iavf_rx_queue *rxq);
int iavf_txq_vec_setup(struct iavf_tx_queue *txq);
diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
new file mode 100644
index 000000000..f0c00be56
--- /dev/null
+++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
@@ -0,0 +1,867 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2019 Intel Corporation
+ */
+
+#include "base/iavf_prototype.h"
+#include "iavf_rxtx_vec_common.h"
+
+#include <x86intrin.h>
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+static inline void
+iavf_rxq_rearm(struct iavf_rx_queue *rxq)
+{
+ int i;
+ uint16_t rx_id;
+ volatile union iavf_rx_desc *rxdp;
+ struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
+
+ rxdp = rxq->rx_ring + rxq->rxrearm_start;
+
+ /* Pull 'n' more MBUFs into the software ring */
+ if (rte_mempool_get_bulk(rxq->mp,
+ (void *)rxp,
+ IAVF_RXQ_REARM_THRESH) < 0) {
+ if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
+ rxq->nb_rx_desc) {
+ __m128i dma_addr0;
+
+ dma_addr0 = _mm_setzero_si128();
+ for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
+ rxp[i] = &rxq->fake_mbuf;
+ _mm_store_si128((__m128i *)&rxdp[i].read,
+ dma_addr0);
+ }
+ }
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
+ IAVF_RXQ_REARM_THRESH;
+ return;
+ }
+
+#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
+ struct rte_mbuf *mb0, *mb1;
+ __m128i dma_addr0, dma_addr1;
+ __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
+ RTE_PKTMBUF_HEADROOM);
+ /* Initialize the mbufs in vector, process 2 mbufs in one loop */
+ for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
+ __m128i vaddr0, vaddr1;
+
+ mb0 = rxp[0];
+ mb1 = rxp[1];
+
+ /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
+ offsetof(struct rte_mbuf, buf_addr) + 8);
+ vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
+ vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
+
+ /* convert pa to dma_addr hdr/data */
+ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
+ dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
+
+ /* add headroom to pa values */
+ dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
+ dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
+
+ /* flush desc with pa dma_addr */
+ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
+ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
+ }
+#else
+ struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
+ __m256i dma_addr0_1, dma_addr2_3;
+ __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
+ /* Initialize the mbufs in vector, process 4 mbufs in one loop */
+ for (i = 0; i < IAVF_RXQ_REARM_THRESH;
+ i += 4, rxp += 4, rxdp += 4) {
+ __m128i vaddr0, vaddr1, vaddr2, vaddr3;
+ __m256i vaddr0_1, vaddr2_3;
+
+ mb0 = rxp[0];
+ mb1 = rxp[1];
+ mb2 = rxp[2];
+ mb3 = rxp[3];
+
+ /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
+ offsetof(struct rte_mbuf, buf_addr) + 8);
+ vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
+ vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
+ vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
+ vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
+
+ /**
+ * merge 0 & 1, by casting 0 to 256-bit and inserting 1
+ * into the high lanes. Similarly for 2 & 3
+ */
+ vaddr0_1 =
+ _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
+ vaddr1, 1);
+ vaddr2_3 =
+ _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
+ vaddr3, 1);
+
+ /* convert pa to dma_addr hdr/data */
+ dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
+ dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
+
+ /* add headroom to pa values */
+ dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
+ dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
+
+ /* flush desc with pa dma_addr */
+ _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
+ _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
+ }
+
+#endif
+
+ rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
+ if (rxq->rxrearm_start >= rxq->nb_rx_desc)
+ rxq->rxrearm_start = 0;
+
+ rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
+
+ rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
+ (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
+
+ /* Update the tail pointer on the NIC */
+ IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+}
+
+#define PKTLEN_SHIFT 10
+
+static inline uint16_t
+_iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts, uint8_t *split_packet)
+{
+#define IAVF_DESCS_PER_LOOP_AVX 8
+
+ /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
+ static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
+ /* [0] reserved */
+ [1] = RTE_PTYPE_L2_ETHER,
+ /* [2] - [21] reserved */
+ [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_NONFRAG,
+ [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_UDP,
+ /* [25] reserved */
+ [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_TCP,
+ [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_SCTP,
+ [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_ICMP,
+ /* All others reserved */
+ };
+ const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
+ 0, rxq->mbuf_initializer);
+ /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
+ struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
+ volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
+ const int avx_aligned = ((rxq->rx_tail & 1) == 0);
+
+ rte_prefetch0(rxdp);
+
+ /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
+ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
+
+ /* See if we need to rearm the RX queue - gives the prefetch a bit
+ * of time to act
+ */
+ if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
+ iavf_rxq_rearm(rxq);
+
+ /* Before we start moving massive data around, check to see if
+ * there is actually a packet available
+ */
+ if (!(rxdp->wb.qword1.status_error_len &
+ rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
+ return 0;
+
+ /* constants used in processing loop */
+ const __m256i crc_adjust =
+ _mm256_set_epi16
+ (/* first descriptor */
+ 0, 0, 0, /* ignore non-length fields */
+ -rxq->crc_len, /* sub crc on data_len */
+ 0, /* ignore high-16bits of pkt_len */
+ -rxq->crc_len, /* sub crc on pkt_len */
+ 0, 0, /* ignore pkt_type field */
+ /* second descriptor */
+ 0, 0, 0, /* ignore non-length fields */
+ -rxq->crc_len, /* sub crc on data_len */
+ 0, /* ignore high-16bits of pkt_len */
+ -rxq->crc_len, /* sub crc on pkt_len */
+ 0, 0 /* ignore pkt_type field */
+ );
+
+ /* 8 packets DD mask, LSB in each 32-bit value */
+ const __m256i dd_check = _mm256_set1_epi32(1);
+
+ /* 8 packets EOP mask, second-LSB in each 32-bit value */
+ const __m256i eop_check = _mm256_slli_epi32(dd_check,
+ IAVF_RX_DESC_STATUS_EOF_SHIFT);
+
+ /* mask to shuffle from desc. to mbuf (2 descriptors)*/
+ const __m256i shuf_msk =
+ _mm256_set_epi8
+ (/* first descriptor */
+ 7, 6, 5, 4, /* octet 4~7, 32bits rss */
+ 3, 2, /* octet 2~3, low 16 bits vlan_macip */
+ 15, 14, /* octet 15~14, 16 bits data_len */
+ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
+ 15, 14, /* octet 15~14, low 16 bits pkt_len */
+ 0xFF, 0xFF, /* pkt_type set as unknown */
+ 0xFF, 0xFF, /*pkt_type set as unknown */
+ /* second descriptor */
+ 7, 6, 5, 4, /* octet 4~7, 32bits rss */
+ 3, 2, /* octet 2~3, low 16 bits vlan_macip */
+ 15, 14, /* octet 15~14, 16 bits data_len */
+ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
+ 15, 14, /* octet 15~14, low 16 bits pkt_len */
+ 0xFF, 0xFF, /* pkt_type set as unknown */
+ 0xFF, 0xFF /*pkt_type set as unknown */
+ );
+ /**
+ * compile-time check the above crc and shuffle layout is correct.
+ * NOTE: the first field (lowest address) is given last in set_epi
+ * calls above.
+ */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+ /* Status/Error flag masks */
+ /**
+ * mask everything except RSS, flow director and VLAN flags
+ * bit2 is for VLAN tag, bit11 for flow director indication
+ * bit13:12 for RSS indication. Bits 3-5 of error
+ * field (bits 22-24) are for IP/L4 checksum errors
+ */
+ const __m256i flags_mask =
+ _mm256_set1_epi32((1 << 2) | (1 << 11) |
+ (3 << 12) | (7 << 22));
+ /**
+ * data to be shuffled by result of flag mask. If VLAN bit is set,
+ * (bit 2), then position 4 in this array will be used in the
+ * destination
+ */
+ const __m256i vlan_flags_shuf =
+ _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
+ 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
+ /**
+ * data to be shuffled by result of flag mask, shifted down 11.
+ * If RSS/FDIR bits are set, shuffle moves appropriate flags in
+ * place.
+ */
+ const __m256i rss_flags_shuf =
+ _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+ PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
+ 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
+ 0, 0, 0, 0, PKT_RX_FDIR, 0);
+
+ /**
+ * data to be shuffled by the result of the flags mask shifted by 22
+ * bits. This gives use the l3_l4 flags.
+ */
+ const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+ /* shift right 1 bit to make sure it not exceed 255 */
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_BAD) >> 1,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+ PKT_RX_IP_CKSUM_BAD >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
+ /* second 128-bits */
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_BAD) >> 1,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+ PKT_RX_IP_CKSUM_BAD >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
+
+ const __m256i cksum_mask =
+ _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_EIP_CKSUM_BAD);
+
+ RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
+
+ uint16_t i, received;
+
+ for (i = 0, received = 0; i < nb_pkts;
+ i += IAVF_DESCS_PER_LOOP_AVX,
+ rxdp += IAVF_DESCS_PER_LOOP_AVX) {
+ /* step 1, copy over 8 mbuf pointers to rx_pkts array */
+ _mm256_storeu_si256((void *)&rx_pkts[i],
+ _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+ _mm256_storeu_si256
+ ((void *)&rx_pkts[i + 4],
+ _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+ __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
+#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
+ /* for AVX we need alignment otherwise loads are not atomic */
+ if (avx_aligned) {
+ /* load in descriptors, 2 at a time, in reverse order */
+ raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
+ rte_compiler_barrier();
+ raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
+ rte_compiler_barrier();
+ raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
+ rte_compiler_barrier();
+ raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
+ } else
+#endif
+ {
+ const __m128i raw_desc7 =
+ _mm_load_si128((void *)(rxdp + 7));
+ rte_compiler_barrier();
+ const __m128i raw_desc6 =
+ _mm_load_si128((void *)(rxdp + 6));
+ rte_compiler_barrier();
+ const __m128i raw_desc5 =
+ _mm_load_si128((void *)(rxdp + 5));
+ rte_compiler_barrier();
+ const __m128i raw_desc4 =
+ _mm_load_si128((void *)(rxdp + 4));
+ rte_compiler_barrier();
+ const __m128i raw_desc3 =
+ _mm_load_si128((void *)(rxdp + 3));
+ rte_compiler_barrier();
+ const __m128i raw_desc2 =
+ _mm_load_si128((void *)(rxdp + 2));
+ rte_compiler_barrier();
+ const __m128i raw_desc1 =
+ _mm_load_si128((void *)(rxdp + 1));
+ rte_compiler_barrier();
+ const __m128i raw_desc0 =
+ _mm_load_si128((void *)(rxdp + 0));
+
+ raw_desc6_7 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc6),
+ raw_desc7, 1);
+ raw_desc4_5 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc4),
+ raw_desc5, 1);
+ raw_desc2_3 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc2),
+ raw_desc3, 1);
+ raw_desc0_1 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc0),
+ raw_desc1, 1);
+ }
+
+ if (split_packet) {
+ int j;
+
+ for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
+ rte_mbuf_prefetch_part2(rx_pkts[i + j]);
+ }
+
+ /**
+ * convert descriptors 4-7 into mbufs, adjusting length and
+ * re-arranging fields. Then write into the mbuf
+ */
+ const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
+ PKTLEN_SHIFT);
+ const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
+ PKTLEN_SHIFT);
+ const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
+ len6_7, 0x80);
+ const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
+ len4_5, 0x80);
+ __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
+ __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
+
+ mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
+ mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
+ /**
+ * to get packet types, shift 64-bit values down 30 bits
+ * and so ptype is in lower 8-bits in each
+ */
+ const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
+ const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
+ const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
+ const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
+ const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
+ const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
+
+ mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
+ mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
+ mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
+ mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
+ /* merge the status bits into one register */
+ const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
+ desc4_5);
+
+ /**
+ * convert descriptors 0-3 into mbufs, adjusting length and
+ * re-arranging fields. Then write into the mbuf
+ */
+ const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
+ PKTLEN_SHIFT);
+ const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
+ PKTLEN_SHIFT);
+ const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
+ len2_3, 0x80);
+ const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
+ len0_1, 0x80);
+ __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
+ __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
+
+ mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
+ mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
+ /* get the packet types */
+ const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
+ const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
+ const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
+ const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
+ const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
+ const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
+
+ mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
+ mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
+ mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
+ mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
+ /* merge the status bits into one register */
+ const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
+ desc0_1);
+
+ /**
+ * take the two sets of status bits and merge to one
+ * After merge, the packets status flags are in the
+ * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+ */
+ __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
+ status0_3);
+
+ /* now do flag manipulation */
+
+ /* get only flag/error bits we want */
+ const __m256i flag_bits =
+ _mm256_and_si256(status0_7, flags_mask);
+ /* set vlan and rss flags */
+ const __m256i vlan_flags =
+ _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
+ const __m256i rss_flags =
+ _mm256_shuffle_epi8(rss_flags_shuf,
+ _mm256_srli_epi32(flag_bits, 11));
+ /**
+ * l3_l4_error flags, shuffle, then shift to correct adjustment
+ * of flags in flags_shuf, and finally mask out extra bits
+ */
+ __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+ _mm256_srli_epi32(flag_bits, 22));
+ l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+ l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+
+ /* merge flags */
+ const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
+ _mm256_or_si256(rss_flags, vlan_flags));
+ /**
+ * At this point, we have the 8 sets of flags in the low 16-bits
+ * of each 32-bit value in vlan0.
+ * We want to extract these, and merge them with the mbuf init
+ * data so we can do a single write to the mbuf to set the flags
+ * and all the other initialization fields. Extracting the
+ * appropriate flags means that we have to do a shift and blend
+ * for each mbuf before we do the write. However, we can also
+ * add in the previously computed rx_descriptor fields to
+ * make a single 256-bit write per mbuf
+ */
+ /* check the structure matches expectations */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+ offsetof(struct rte_mbuf, rearm_data) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+ RTE_ALIGN(offsetof(struct rte_mbuf,
+ rearm_data),
+ 16));
+ /* build up data and do writes */
+ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+ rearm6, rearm7;
+ rearm6 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(mbuf_flags, 8),
+ 0x04);
+ rearm4 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(mbuf_flags, 4),
+ 0x04);
+ rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
+ rearm0 = _mm256_blend_epi32(mbuf_init,
+ _mm256_srli_si256(mbuf_flags, 4),
+ 0x04);
+ /* permute to add in the rx_descriptor e.g. rss fields */
+ rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+ rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+ rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+ rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+ /* write to mbuf */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
+ rearm6);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
+ rearm4);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
+ rearm2);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
+ rearm0);
+
+ /* repeat for the odd mbufs */
+ const __m256i odd_flags =
+ _mm256_castsi128_si256
+ (_mm256_extracti128_si256(mbuf_flags, 1));
+ rearm7 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(odd_flags, 8),
+ 0x04);
+ rearm5 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(odd_flags, 4),
+ 0x04);
+ rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
+ rearm1 = _mm256_blend_epi32(mbuf_init,
+ _mm256_srli_si256(odd_flags, 4),
+ 0x04);
+ /* since odd mbufs are already in hi 128-bits use blend */
+ rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+ rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+ rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+ rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+ /* again write to mbufs */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
+ rearm7);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
+ rearm5);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
+ rearm3);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
+ rearm1);
+
+ /* extract and record EOP bit */
+ if (split_packet) {
+ const __m128i eop_mask =
+ _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
+ const __m256i eop_bits256 = _mm256_and_si256(status0_7,
+ eop_check);
+ /* pack status bits into a single 128-bit register */
+ const __m128i eop_bits =
+ _mm_packus_epi32
+ (_mm256_castsi256_si128(eop_bits256),
+ _mm256_extractf128_si256(eop_bits256,
+ 1));
+ /**
+ * flip bits, and mask out the EOP bit, which is now
+ * a split-packet bit i.e. !EOP, rather than EOP one.
+ */
+ __m128i split_bits = _mm_andnot_si128(eop_bits,
+ eop_mask);
+ /**
+ * eop bits are out of order, so we need to shuffle them
+ * back into order again. In doing so, only use low 8
+ * bits, which acts like another pack instruction
+ * The original order is (hi->lo): 1,3,5,7,0,2,4,6
+ * [Since we use epi8, the 16-bit positions are
+ * multiplied by 2 in the eop_shuffle value.]
+ */
+ __m128i eop_shuffle =
+ _mm_set_epi8(/* zero hi 64b */
+ 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF,
+ /* move values to lo 64b */
+ 8, 0, 10, 2,
+ 12, 4, 14, 6);
+ split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
+ *(uint64_t *)split_packet =
+ _mm_cvtsi128_si64(split_bits);
+ split_packet += IAVF_DESCS_PER_LOOP_AVX;
+ }
+
+ /* perform dd_check */
+ status0_7 = _mm256_and_si256(status0_7, dd_check);
+ status0_7 = _mm256_packs_epi32(status0_7,
+ _mm256_setzero_si256());
+
+ uint64_t burst = __builtin_popcountll
+ (_mm_cvtsi128_si64
+ (_mm256_extracti128_si256
+ (status0_7, 1)));
+ burst += __builtin_popcountll
+ (_mm_cvtsi128_si64
+ (_mm256_castsi256_si128(status0_7)));
+ received += burst;
+ if (burst != IAVF_DESCS_PER_LOOP_AVX)
+ break;
+ }
+
+ /* update tail pointers */
+ rxq->rx_tail += received;
+ rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+ if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
+ rxq->rx_tail--;
+ received--;
+ }
+ rxq->rxrearm_nb += received;
+ return received;
+}
+
+/**
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
+}
+
+/**
+ * vPMD receive routine that reassembles single burst of 32 scattered packets
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+static uint16_t
+iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct iavf_rx_queue *rxq = rx_queue;
+ uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
+
+ /* get some new buffers */
+ uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
+ split_flags);
+ if (nb_bufs == 0)
+ return 0;
+
+ /* happy day case, full burst + no packets to be joined */
+ const uint64_t *split_fl64 = (uint64_t *)split_flags;
+
+ if (!rxq->pkt_first_seg &&
+ split_fl64[0] == 0 && split_fl64[1] == 0 &&
+ split_fl64[2] == 0 && split_fl64[3] == 0)
+ return nb_bufs;
+
+ /* reassemble any packets that need reassembly*/
+ unsigned int i = 0;
+
+ if (!rxq->pkt_first_seg) {
+ /* find the first split flag, and only reassemble then*/
+ while (i < nb_bufs && !split_flags[i])
+ i++;
+ if (i == nb_bufs)
+ return nb_bufs;
+ rxq->pkt_first_seg = rx_pkts[i];
+ }
+ return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
+ &split_flags[i]);
+}
+
+/**
+ * vPMD receive routine that reassembles scattered packets.
+ * Main receive routine that can handle arbitrary burst sizes
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t retval = 0;
+
+ while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
+ uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
+ rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
+ retval += burst;
+ nb_pkts -= burst;
+ if (burst < IAVF_VPMD_RX_MAX_BURST)
+ return retval;
+ }
+ return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
+ rx_pkts + retval, nb_pkts);
+}
+
+static inline void
+iavf_vtx1(volatile struct iavf_tx_desc *txdp,
+ struct rte_mbuf *pkt, uint64_t flags)
+{
+ uint64_t high_qw =
+ (IAVF_TX_DESC_DTYPE_DATA |
+ ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) |
+ ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
+
+ __m128i descriptor = _mm_set_epi64x(high_qw,
+ pkt->buf_physaddr + pkt->data_off);
+ _mm_store_si128((__m128i *)txdp, descriptor);
+}
+
+static inline void
+iavf_vtx(volatile struct iavf_tx_desc *txdp,
+ struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
+{
+ const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
+ ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT));
+
+ /* if unaligned on 32-bit boundary, do one to align */
+ if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
+ iavf_vtx1(txdp, *pkt, flags);
+ nb_pkts--, txdp++, pkt++;
+ }
+
+ /* do two at a time while possible, in bursts */
+ for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
+ uint64_t hi_qw3 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[3]->data_len <<
+ IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+ uint64_t hi_qw2 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[2]->data_len <<
+ IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+ uint64_t hi_qw1 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[1]->data_len <<
+ IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+ uint64_t hi_qw0 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[0]->data_len <<
+ IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+
+ __m256i desc2_3 =
+ _mm256_set_epi64x
+ (hi_qw3,
+ pkt[3]->buf_physaddr + pkt[3]->data_off,
+ hi_qw2,
+ pkt[2]->buf_physaddr + pkt[2]->data_off);
+ __m256i desc0_1 =
+ _mm256_set_epi64x
+ (hi_qw1,
+ pkt[1]->buf_physaddr + pkt[1]->data_off,
+ hi_qw0,
+ pkt[0]->buf_physaddr + pkt[0]->data_off);
+ _mm256_store_si256((void *)(txdp + 2), desc2_3);
+ _mm256_store_si256((void *)txdp, desc0_1);
+ }
+
+ /* do any last ones */
+ while (nb_pkts) {
+ iavf_vtx1(txdp, *pkt, flags);
+ txdp++, pkt++, nb_pkts--;
+ }
+}
+
+static inline uint16_t
+iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
+ volatile struct iavf_tx_desc *txdp;
+ struct iavf_tx_entry *txep;
+ uint16_t n, nb_commit, tx_id;
+ uint64_t flags = IAVF_TX_DESC_CMD_EOP;
+ uint64_t rs = IAVF_TX_DESC_CMD_RS | IAVF_TX_DESC_CMD_EOP;
+
+ /* cross rx_thresh boundary is not allowed */
+ nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
+
+ if (txq->nb_free < txq->free_thresh)
+ iavf_tx_free_bufs(txq);
+
+ nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
+ if (unlikely(nb_pkts == 0))
+ return 0;
+
+ tx_id = txq->tx_tail;
+ txdp = &txq->tx_ring[tx_id];
+ txep = &txq->sw_ring[tx_id];
+
+ txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
+
+ n = (uint16_t)(txq->nb_tx_desc - tx_id);
+ if (nb_commit >= n) {
+ tx_backlog_entry(txep, tx_pkts, n);
+
+ iavf_vtx(txdp, tx_pkts, n - 1, flags);
+ tx_pkts += (n - 1);
+ txdp += (n - 1);
+
+ iavf_vtx1(txdp, *tx_pkts++, rs);
+
+ nb_commit = (uint16_t)(nb_commit - n);
+
+ tx_id = 0;
+ txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
+
+ /* avoid reach the end of ring */
+ txdp = &txq->tx_ring[tx_id];
+ txep = &txq->sw_ring[tx_id];
+ }
+
+ tx_backlog_entry(txep, tx_pkts, nb_commit);
+
+ iavf_vtx(txdp, tx_pkts, nb_commit, flags);
+
+ tx_id = (uint16_t)(tx_id + nb_commit);
+ if (tx_id > txq->next_rs) {
+ txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
+ IAVF_TXD_QW1_CMD_SHIFT);
+ txq->next_rs =
+ (uint16_t)(txq->next_rs + txq->rs_thresh);
+ }
+
+ txq->tx_tail = tx_id;
+
+ IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+
+ return nb_pkts;
+}
+
+uint16_t
+iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t nb_tx = 0;
+ struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
+
+ while (nb_pkts) {
+ uint16_t ret, num;
+
+ num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
+ ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
+ num);
+ nb_tx += ret;
+ nb_pkts -= ret;
+ if (ret < num)
+ break;
+ }
+
+ return nb_tx;
+}
diff --git a/drivers/net/iavf/iavf_rxtx_vec_common.h b/drivers/net/iavf/iavf_rxtx_vec_common.h
index db509d71f..fff0555d2 100644
--- a/drivers/net/iavf/iavf_rxtx_vec_common.h
+++ b/drivers/net/iavf/iavf_rxtx_vec_common.h
@@ -207,4 +207,76 @@ iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq)
rxq->mbuf_initializer = *(uint64_t *)p;
return 0;
}
+
+static inline int
+iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq)
+{
+ if (!rxq)
+ return -1;
+
+ if (!rte_is_power_of_2(rxq->nb_rx_desc))
+ return -1;
+
+ if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST)
+ return -1;
+
+ if (rxq->nb_rx_desc % rxq->rx_free_thresh)
+ return -1;
+
+ return 0;
+}
+
+#define IAVF_NO_VECTOR_FLAGS ( \
+ DEV_TX_OFFLOAD_MULTI_SEGS | \
+ DEV_TX_OFFLOAD_VLAN_INSERT | \
+ DEV_TX_OFFLOAD_SCTP_CKSUM | \
+ DEV_TX_OFFLOAD_UDP_CKSUM | \
+ DEV_TX_OFFLOAD_TCP_CKSUM)
+
+static inline int
+iavf_tx_vec_queue_default(struct iavf_tx_queue *txq)
+{
+ if (!txq)
+ return -1;
+
+ if (txq->offloads & IAVF_NO_VECTOR_FLAGS)
+ return -1;
+
+ if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST ||
+ txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF)
+ return -1;
+
+ return 0;
+}
+
+static inline int
+iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev)
+{
+ int i;
+ struct iavf_rx_queue *rxq;
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ if (iavf_rx_vec_queue_default(rxq))
+ return -1;
+ }
+
+ return 0;
+}
+
+static inline int
+iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev)
+{
+ int i;
+ struct iavf_tx_queue *txq;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ if (iavf_tx_vec_queue_default(txq))
+ return -1;
+ }
+
+ return 0;
+}
+
#endif
diff --git a/drivers/net/iavf/iavf_rxtx_vec_sse.c b/drivers/net/iavf/iavf_rxtx_vec_sse.c
index cc71f23a5..15c52a4c2 100644
--- a/drivers/net/iavf/iavf_rxtx_vec_sse.c
+++ b/drivers/net/iavf/iavf_rxtx_vec_sse.c
@@ -655,3 +655,15 @@ iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
rxq->ops = &sse_vec_rxq_ops;
return iavf_rxq_vec_setup_default(rxq);
}
+
+int __attribute__((cold))
+iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
+{
+ return iavf_rx_vec_dev_check_default(dev);
+}
+
+int __attribute__((cold))
+iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
+{
+ return iavf_tx_vec_dev_check_default(dev);
+}
diff --git a/drivers/net/iavf/meson.build b/drivers/net/iavf/meson.build
index e5a2f5553..9c5278e17 100644
--- a/drivers/net/iavf/meson.build
+++ b/drivers/net/iavf/meson.build
@@ -17,4 +17,21 @@ sources = files(
if arch_subdir == 'x86'
dpdk_conf.set('RTE_LIBRTE_IAVF_INC_VECTOR', 1)
sources += files('iavf_rxtx_vec_sse.c')
+
+ # compile AVX2 version if either:
+ # a. we have AVX supported in minimum instruction set baseline
+ # b. it's not minimum instruction set, but supported by compiler
+ if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2')
+ cflags += ['-DCC_AVX2_SUPPORT']
+ sources += files('iavf_rxtx_vec_avx2.c')
+ elif cc.has_argument('-mavx2')
+ cflags += ['-DCC_AVX2_SUPPORT']
+ i40e_avx2_lib = static_library('iavf_avx2_lib',
+ 'iavf_rxtx_vec_avx2.c',
+ dependencies: [static_rte_ethdev,
+ static_rte_kvargs, static_rte_hash],
+ include_directories: includes,
+ c_args: [cflags, '-mavx2'])
+ objs += iavf_avx2_lib.extract_objects('iavf_rxtx_vec_avx2.c')
+ endif
endif
--
2.17.1
^ permalink raw reply [flat|nested] 3+ messages in thread
* Re: [dpdk-dev] [PATCH] net/iavf: enable AVX2 for iavf
2019-09-04 10:06 Leyi Rong
@ 2019-09-04 13:29 ` Aaron Conole
0 siblings, 0 replies; 3+ messages in thread
From: Aaron Conole @ 2019-09-04 13:29 UTC (permalink / raw)
To: Leyi Rong; +Cc: wenzhuo.lu, qi.z.zhang, xiaolong.ye, dev
Leyi Rong <leyi.rong@intel.com> writes:
> This patch enables AVX data path for iavf PMD.
>
> Signed-off-by: Leyi Rong <leyi.rong@intel.com>
> ---
> drivers/net/iavf/Makefile | 21 +
> drivers/net/iavf/iavf_rxtx.c | 62 +-
> drivers/net/iavf/iavf_rxtx.h | 10 +
> drivers/net/iavf/iavf_rxtx_vec_avx2.c | 867 ++++++++++++++++++++++++
> drivers/net/iavf/iavf_rxtx_vec_common.h | 72 ++
> drivers/net/iavf/iavf_rxtx_vec_sse.c | 12 +
> drivers/net/iavf/meson.build | 17 +
> 7 files changed, 1041 insertions(+), 20 deletions(-)
> create mode 100644 drivers/net/iavf/iavf_rxtx_vec_avx2.c
>
> diff --git a/drivers/net/iavf/Makefile b/drivers/net/iavf/Makefile
> index cd74e14ab..cf0ed99f0 100644
> --- a/drivers/net/iavf/Makefile
> +++ b/drivers/net/iavf/Makefile
> @@ -48,4 +48,25 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y)
> SRCS-$(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR) += iavf_rxtx_vec_sse.c
> endif
>
> +ifeq ($(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR), y)
> + ifeq ($(findstring RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2)
> + CC_AVX2_SUPPORT=1
> + else
> + CC_AVX2_SUPPORT=\
> + $(shell $(CC) -march=core-avx2 -dM -E - </dev/null 2>&1 | \
> + grep -q AVX2 && echo 1)
> + ifeq ($(CC_AVX2_SUPPORT), 1)
> + ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y)
> + CFLAGS_iavf_rxtx_vec_avx2.o += -march=core-avx2
> + else
> + CFLAGS_iavf_rxtx_vec_avx2.o += -mavx2
> + endif
> + endif
> + endif
> +endif
> +
> +ifeq ($(CC_AVX2_SUPPORT), 1)
> + SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_rxtx_vec_avx2.c
> +endif
> +
> include $(RTE_SDK)/mk/rte.lib.mk
> diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c
> index 22d7bb612..2eb496d5f 100644
> --- a/drivers/net/iavf/iavf_rxtx.c
> +++ b/drivers/net/iavf/iavf_rxtx.c
> @@ -1743,23 +1743,36 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
> IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
> struct iavf_rx_queue *rxq;
> int i;
> + bool use_avx2 = false;
>
> - if (adapter->rx_vec_allowed) {
> - if (dev->data->scattered_rx) {
> - PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback"
> - " (port=%d).", dev->data->port_id);
> - dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec;
> - } else {
> - PMD_DRV_LOG(DEBUG, "Using Vector Rx callback"
> - " (port=%d).", dev->data->port_id);
> - dev->rx_pkt_burst = iavf_recv_pkts_vec;
> - }
> + if (!iavf_rx_vec_dev_check(dev)) {
> for (i = 0; i < dev->data->nb_rx_queues; i++) {
> rxq = dev->data->rx_queues[i];
> - if (!rxq)
> - continue;
> - iavf_rxq_vec_setup(rxq);
> + (void)iavf_rxq_vec_setup(rxq);
> }
> +
> + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
> + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
> + use_avx2 = true;
This will cause a build failure on aarch64 systems.
ex:
../drivers/net/iavf/iavf_rxtx.c:1754:7: error: implicit declaration of function ‘rte_cpu_get_flag_enabled’ [-Werror=implicit-function-declaration]
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
^
../drivers/net/iavf/iavf_rxtx.c:1754:32: error: ‘RTE_CPUFLAG_AVX2’ undeclared (first use in this function)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
^
../drivers/net/iavf/iavf_rxtx.c:1754:32: note: each undeclared identifier is reported only once for each function it appears in
../drivers/net/iavf/iavf_rxtx.c:1755:32: error: ‘RTE_CPUFLAG_AVX512F’ undeclared (first use in this function)
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
^
../drivers/net/iavf/iavf_rxtx.c: In function ‘iavf_set_tx_function’:
../drivers/net/iavf/iavf_rxtx.c:1807:32: error: ‘RTE_CPUFLAG_AVX2’ undeclared (first use in this function)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
^
../drivers/net/iavf/iavf_rxtx.c:1808:32: error: ‘RTE_CPUFLAG_AVX512F’ undeclared (first use in this function)
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
^
> + if (dev->data->scattered_rx) {
> + PMD_DRV_LOG(DEBUG,
> + "Using %sVector Scattered Rx (port %d).",
> + use_avx2 ? "avx2 " : "",
> + dev->data->port_id);
> + dev->rx_pkt_burst = use_avx2 ?
> + iavf_recv_scattered_pkts_vec_avx2 :
> + iavf_recv_scattered_pkts_vec;
> + } else {
> + PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
> + use_avx2 ? "avx2 " : "",
> + dev->data->port_id);
> + dev->rx_pkt_burst = use_avx2 ?
> + iavf_recv_pkts_vec_avx2 :
> + iavf_recv_pkts_vec;
> + }
> +
> + return;
> } else if (dev->data->scattered_rx) {
> PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
> dev->data->port_id);
> @@ -1779,22 +1792,31 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
> void
> iavf_set_tx_function(struct rte_eth_dev *dev)
> {
> - struct iavf_adapter *adapter =
> - IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
> struct iavf_tx_queue *txq;
> int i;
> + bool use_avx2 = false;
>
> - if (adapter->tx_vec_allowed) {
> - PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).",
> - dev->data->port_id);
> - dev->tx_pkt_burst = iavf_xmit_pkts_vec;
> - dev->tx_pkt_prepare = NULL;
> + if (!iavf_tx_vec_dev_check(dev)) {
> for (i = 0; i < dev->data->nb_tx_queues; i++) {
> txq = dev->data->tx_queues[i];
> if (!txq)
> continue;
> iavf_txq_vec_setup(txq);
> }
> +
> + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
> + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
> + use_avx2 = true;
> +
> + PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
> + use_avx2 ? "avx2 " : "",
> + dev->data->port_id);
> + dev->tx_pkt_burst = use_avx2 ?
> + iavf_xmit_pkts_vec_avx2 :
> + iavf_xmit_pkts_vec;
> + dev->tx_pkt_prepare = NULL;
> +
> + return;
> } else {
> PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
> dev->data->port_id);
> diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h
> index c86720bda..7dde392bf 100644
> --- a/drivers/net/iavf/iavf_rxtx.h
> +++ b/drivers/net/iavf/iavf_rxtx.h
> @@ -19,6 +19,7 @@
> /* used for Vector PMD */
> #define IAVF_VPMD_RX_MAX_BURST 32
> #define IAVF_VPMD_TX_MAX_BURST 32
> +#define IAVF_RXQ_REARM_THRESH 32
> #define IAVF_VPMD_DESCS_PER_LOOP 4
> #define IAVF_VPMD_TX_MAX_FREE_BUF 64
>
> @@ -200,6 +201,15 @@ uint16_t iavf_recv_scattered_pkts_vec(void *rx_queue,
> uint16_t nb_pkts);
> uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
> uint16_t nb_pkts);
> +uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
> + uint16_t nb_pkts);
> +uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue,
> + struct rte_mbuf **rx_pkts,
> + uint16_t nb_pkts);
> +uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
> + uint16_t nb_pkts);
> +int iavf_rx_vec_dev_check(struct rte_eth_dev *dev);
> +int iavf_tx_vec_dev_check(struct rte_eth_dev *dev);
> int iavf_rxq_vec_setup(struct iavf_rx_queue *rxq);
> int iavf_txq_vec_setup(struct iavf_tx_queue *txq);
>
> diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
> new file mode 100644
> index 000000000..f0c00be56
> --- /dev/null
> +++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
> @@ -0,0 +1,867 @@
> +/* SPDX-License-Identifier: BSD-3-Clause
> + * Copyright(c) 2019 Intel Corporation
> + */
> +
> +#include "base/iavf_prototype.h"
> +#include "iavf_rxtx_vec_common.h"
> +
> +#include <x86intrin.h>
> +
> +#ifndef __INTEL_COMPILER
> +#pragma GCC diagnostic ignored "-Wcast-qual"
> +#endif
> +
> +static inline void
> +iavf_rxq_rearm(struct iavf_rx_queue *rxq)
> +{
> + int i;
> + uint16_t rx_id;
> + volatile union iavf_rx_desc *rxdp;
> + struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
> +
> + rxdp = rxq->rx_ring + rxq->rxrearm_start;
> +
> + /* Pull 'n' more MBUFs into the software ring */
> + if (rte_mempool_get_bulk(rxq->mp,
> + (void *)rxp,
> + IAVF_RXQ_REARM_THRESH) < 0) {
> + if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
> + rxq->nb_rx_desc) {
> + __m128i dma_addr0;
> +
> + dma_addr0 = _mm_setzero_si128();
> + for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
> + rxp[i] = &rxq->fake_mbuf;
> + _mm_store_si128((__m128i *)&rxdp[i].read,
> + dma_addr0);
> + }
> + }
> + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
> + IAVF_RXQ_REARM_THRESH;
> + return;
> + }
> +
> +#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
> + struct rte_mbuf *mb0, *mb1;
> + __m128i dma_addr0, dma_addr1;
> + __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
> + RTE_PKTMBUF_HEADROOM);
> + /* Initialize the mbufs in vector, process 2 mbufs in one loop */
> + for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
> + __m128i vaddr0, vaddr1;
> +
> + mb0 = rxp[0];
> + mb1 = rxp[1];
> +
> + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
> + offsetof(struct rte_mbuf, buf_addr) + 8);
> + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
> + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
> +
> + /* convert pa to dma_addr hdr/data */
> + dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
> + dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
> +
> + /* add headroom to pa values */
> + dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
> + dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
> +
> + /* flush desc with pa dma_addr */
> + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
> + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
> + }
> +#else
> + struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
> + __m256i dma_addr0_1, dma_addr2_3;
> + __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
> + /* Initialize the mbufs in vector, process 4 mbufs in one loop */
> + for (i = 0; i < IAVF_RXQ_REARM_THRESH;
> + i += 4, rxp += 4, rxdp += 4) {
> + __m128i vaddr0, vaddr1, vaddr2, vaddr3;
> + __m256i vaddr0_1, vaddr2_3;
> +
> + mb0 = rxp[0];
> + mb1 = rxp[1];
> + mb2 = rxp[2];
> + mb3 = rxp[3];
> +
> + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
> + offsetof(struct rte_mbuf, buf_addr) + 8);
> + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
> + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
> + vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
> + vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
> +
> + /**
> + * merge 0 & 1, by casting 0 to 256-bit and inserting 1
> + * into the high lanes. Similarly for 2 & 3
> + */
> + vaddr0_1 =
> + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
> + vaddr1, 1);
> + vaddr2_3 =
> + _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
> + vaddr3, 1);
> +
> + /* convert pa to dma_addr hdr/data */
> + dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
> + dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
> +
> + /* add headroom to pa values */
> + dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
> + dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
> +
> + /* flush desc with pa dma_addr */
> + _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
> + _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
> + }
> +
> +#endif
> +
> + rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
> + if (rxq->rxrearm_start >= rxq->nb_rx_desc)
> + rxq->rxrearm_start = 0;
> +
> + rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
> +
> + rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
> + (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
> +
> + /* Update the tail pointer on the NIC */
> + IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
> +}
> +
> +#define PKTLEN_SHIFT 10
> +
> +static inline uint16_t
> +_iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
> + struct rte_mbuf **rx_pkts,
> + uint16_t nb_pkts, uint8_t *split_packet)
> +{
> +#define IAVF_DESCS_PER_LOOP_AVX 8
> +
> + /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
> + static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
> + /* [0] reserved */
> + [1] = RTE_PTYPE_L2_ETHER,
> + /* [2] - [21] reserved */
> + [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> + RTE_PTYPE_L4_FRAG,
> + [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> + RTE_PTYPE_L4_NONFRAG,
> + [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> + RTE_PTYPE_L4_UDP,
> + /* [25] reserved */
> + [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> + RTE_PTYPE_L4_TCP,
> + [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> + RTE_PTYPE_L4_SCTP,
> + [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
> + RTE_PTYPE_L4_ICMP,
> + /* All others reserved */
> + };
> + const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
> + 0, rxq->mbuf_initializer);
> + /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
> + struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
> + volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
> + const int avx_aligned = ((rxq->rx_tail & 1) == 0);
> +
> + rte_prefetch0(rxdp);
> +
> + /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
> + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
> +
> + /* See if we need to rearm the RX queue - gives the prefetch a bit
> + * of time to act
> + */
> + if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
> + iavf_rxq_rearm(rxq);
> +
> + /* Before we start moving massive data around, check to see if
> + * there is actually a packet available
> + */
> + if (!(rxdp->wb.qword1.status_error_len &
> + rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
> + return 0;
> +
> + /* constants used in processing loop */
> + const __m256i crc_adjust =
> + _mm256_set_epi16
> + (/* first descriptor */
> + 0, 0, 0, /* ignore non-length fields */
> + -rxq->crc_len, /* sub crc on data_len */
> + 0, /* ignore high-16bits of pkt_len */
> + -rxq->crc_len, /* sub crc on pkt_len */
> + 0, 0, /* ignore pkt_type field */
> + /* second descriptor */
> + 0, 0, 0, /* ignore non-length fields */
> + -rxq->crc_len, /* sub crc on data_len */
> + 0, /* ignore high-16bits of pkt_len */
> + -rxq->crc_len, /* sub crc on pkt_len */
> + 0, 0 /* ignore pkt_type field */
> + );
> +
> + /* 8 packets DD mask, LSB in each 32-bit value */
> + const __m256i dd_check = _mm256_set1_epi32(1);
> +
> + /* 8 packets EOP mask, second-LSB in each 32-bit value */
> + const __m256i eop_check = _mm256_slli_epi32(dd_check,
> + IAVF_RX_DESC_STATUS_EOF_SHIFT);
> +
> + /* mask to shuffle from desc. to mbuf (2 descriptors)*/
> + const __m256i shuf_msk =
> + _mm256_set_epi8
> + (/* first descriptor */
> + 7, 6, 5, 4, /* octet 4~7, 32bits rss */
> + 3, 2, /* octet 2~3, low 16 bits vlan_macip */
> + 15, 14, /* octet 15~14, 16 bits data_len */
> + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
> + 15, 14, /* octet 15~14, low 16 bits pkt_len */
> + 0xFF, 0xFF, /* pkt_type set as unknown */
> + 0xFF, 0xFF, /*pkt_type set as unknown */
> + /* second descriptor */
> + 7, 6, 5, 4, /* octet 4~7, 32bits rss */
> + 3, 2, /* octet 2~3, low 16 bits vlan_macip */
> + 15, 14, /* octet 15~14, 16 bits data_len */
> + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
> + 15, 14, /* octet 15~14, low 16 bits pkt_len */
> + 0xFF, 0xFF, /* pkt_type set as unknown */
> + 0xFF, 0xFF /*pkt_type set as unknown */
> + );
> + /**
> + * compile-time check the above crc and shuffle layout is correct.
> + * NOTE: the first field (lowest address) is given last in set_epi
> + * calls above.
> + */
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
> + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
> + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
> + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
> + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
> +
> + /* Status/Error flag masks */
> + /**
> + * mask everything except RSS, flow director and VLAN flags
> + * bit2 is for VLAN tag, bit11 for flow director indication
> + * bit13:12 for RSS indication. Bits 3-5 of error
> + * field (bits 22-24) are for IP/L4 checksum errors
> + */
> + const __m256i flags_mask =
> + _mm256_set1_epi32((1 << 2) | (1 << 11) |
> + (3 << 12) | (7 << 22));
> + /**
> + * data to be shuffled by result of flag mask. If VLAN bit is set,
> + * (bit 2), then position 4 in this array will be used in the
> + * destination
> + */
> + const __m256i vlan_flags_shuf =
> + _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
> + 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
> + /**
> + * data to be shuffled by result of flag mask, shifted down 11.
> + * If RSS/FDIR bits are set, shuffle moves appropriate flags in
> + * place.
> + */
> + const __m256i rss_flags_shuf =
> + _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
> + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
> + 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
> + 0, 0, 0, 0, 0, 0, 0, 0,
> + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
> + 0, 0, 0, 0, PKT_RX_FDIR, 0);
> +
> + /**
> + * data to be shuffled by the result of the flags mask shifted by 22
> + * bits. This gives use the l3_l4 flags.
> + */
> + const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
> + /* shift right 1 bit to make sure it not exceed 255 */
> + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
> + PKT_RX_IP_CKSUM_BAD) >> 1,
> + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
> + PKT_RX_L4_CKSUM_BAD) >> 1,
> + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
> + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
> + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
> + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
> + PKT_RX_IP_CKSUM_BAD >> 1,
> + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
> + /* second 128-bits */
> + 0, 0, 0, 0, 0, 0, 0, 0,
> + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
> + PKT_RX_IP_CKSUM_BAD) >> 1,
> + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
> + PKT_RX_L4_CKSUM_BAD) >> 1,
> + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
> + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
> + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
> + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
> + PKT_RX_IP_CKSUM_BAD >> 1,
> + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
> +
> + const __m256i cksum_mask =
> + _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
> + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
> + PKT_RX_EIP_CKSUM_BAD);
> +
> + RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
> +
> + uint16_t i, received;
> +
> + for (i = 0, received = 0; i < nb_pkts;
> + i += IAVF_DESCS_PER_LOOP_AVX,
> + rxdp += IAVF_DESCS_PER_LOOP_AVX) {
> + /* step 1, copy over 8 mbuf pointers to rx_pkts array */
> + _mm256_storeu_si256((void *)&rx_pkts[i],
> + _mm256_loadu_si256((void *)&sw_ring[i]));
> +#ifdef RTE_ARCH_X86_64
> + _mm256_storeu_si256
> + ((void *)&rx_pkts[i + 4],
> + _mm256_loadu_si256((void *)&sw_ring[i + 4]));
> +#endif
> +
> + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
> +#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
> + /* for AVX we need alignment otherwise loads are not atomic */
> + if (avx_aligned) {
> + /* load in descriptors, 2 at a time, in reverse order */
> + raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
> + rte_compiler_barrier();
> + raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
> + rte_compiler_barrier();
> + raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
> + rte_compiler_barrier();
> + raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
> + } else
> +#endif
> + {
> + const __m128i raw_desc7 =
> + _mm_load_si128((void *)(rxdp + 7));
> + rte_compiler_barrier();
> + const __m128i raw_desc6 =
> + _mm_load_si128((void *)(rxdp + 6));
> + rte_compiler_barrier();
> + const __m128i raw_desc5 =
> + _mm_load_si128((void *)(rxdp + 5));
> + rte_compiler_barrier();
> + const __m128i raw_desc4 =
> + _mm_load_si128((void *)(rxdp + 4));
> + rte_compiler_barrier();
> + const __m128i raw_desc3 =
> + _mm_load_si128((void *)(rxdp + 3));
> + rte_compiler_barrier();
> + const __m128i raw_desc2 =
> + _mm_load_si128((void *)(rxdp + 2));
> + rte_compiler_barrier();
> + const __m128i raw_desc1 =
> + _mm_load_si128((void *)(rxdp + 1));
> + rte_compiler_barrier();
> + const __m128i raw_desc0 =
> + _mm_load_si128((void *)(rxdp + 0));
> +
> + raw_desc6_7 =
> + _mm256_inserti128_si256
> + (_mm256_castsi128_si256(raw_desc6),
> + raw_desc7, 1);
> + raw_desc4_5 =
> + _mm256_inserti128_si256
> + (_mm256_castsi128_si256(raw_desc4),
> + raw_desc5, 1);
> + raw_desc2_3 =
> + _mm256_inserti128_si256
> + (_mm256_castsi128_si256(raw_desc2),
> + raw_desc3, 1);
> + raw_desc0_1 =
> + _mm256_inserti128_si256
> + (_mm256_castsi128_si256(raw_desc0),
> + raw_desc1, 1);
> + }
> +
> + if (split_packet) {
> + int j;
> +
> + for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
> + rte_mbuf_prefetch_part2(rx_pkts[i + j]);
> + }
> +
> + /**
> + * convert descriptors 4-7 into mbufs, adjusting length and
> + * re-arranging fields. Then write into the mbuf
> + */
> + const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
> + PKTLEN_SHIFT);
> + const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
> + PKTLEN_SHIFT);
> + const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
> + len6_7, 0x80);
> + const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
> + len4_5, 0x80);
> + __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
> + __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
> +
> + mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
> + mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
> + /**
> + * to get packet types, shift 64-bit values down 30 bits
> + * and so ptype is in lower 8-bits in each
> + */
> + const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
> + const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
> + const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
> + const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
> + const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
> + const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
> +
> + mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
> + mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
> + mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
> + mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
> + /* merge the status bits into one register */
> + const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
> + desc4_5);
> +
> + /**
> + * convert descriptors 0-3 into mbufs, adjusting length and
> + * re-arranging fields. Then write into the mbuf
> + */
> + const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
> + PKTLEN_SHIFT);
> + const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
> + PKTLEN_SHIFT);
> + const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
> + len2_3, 0x80);
> + const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
> + len0_1, 0x80);
> + __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
> + __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
> +
> + mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
> + mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
> + /* get the packet types */
> + const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
> + const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
> + const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
> + const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
> + const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
> + const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
> +
> + mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
> + mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
> + mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
> + mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
> + /* merge the status bits into one register */
> + const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
> + desc0_1);
> +
> + /**
> + * take the two sets of status bits and merge to one
> + * After merge, the packets status flags are in the
> + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
> + */
> + __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
> + status0_3);
> +
> + /* now do flag manipulation */
> +
> + /* get only flag/error bits we want */
> + const __m256i flag_bits =
> + _mm256_and_si256(status0_7, flags_mask);
> + /* set vlan and rss flags */
> + const __m256i vlan_flags =
> + _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
> + const __m256i rss_flags =
> + _mm256_shuffle_epi8(rss_flags_shuf,
> + _mm256_srli_epi32(flag_bits, 11));
> + /**
> + * l3_l4_error flags, shuffle, then shift to correct adjustment
> + * of flags in flags_shuf, and finally mask out extra bits
> + */
> + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
> + _mm256_srli_epi32(flag_bits, 22));
> + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
> + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
> +
> + /* merge flags */
> + const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
> + _mm256_or_si256(rss_flags, vlan_flags));
> + /**
> + * At this point, we have the 8 sets of flags in the low 16-bits
> + * of each 32-bit value in vlan0.
> + * We want to extract these, and merge them with the mbuf init
> + * data so we can do a single write to the mbuf to set the flags
> + * and all the other initialization fields. Extracting the
> + * appropriate flags means that we have to do a shift and blend
> + * for each mbuf before we do the write. However, we can also
> + * add in the previously computed rx_descriptor fields to
> + * make a single 256-bit write per mbuf
> + */
> + /* check the structure matches expectations */
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
> + offsetof(struct rte_mbuf, rearm_data) + 8);
> + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
> + RTE_ALIGN(offsetof(struct rte_mbuf,
> + rearm_data),
> + 16));
> + /* build up data and do writes */
> + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
> + rearm6, rearm7;
> + rearm6 = _mm256_blend_epi32(mbuf_init,
> + _mm256_slli_si256(mbuf_flags, 8),
> + 0x04);
> + rearm4 = _mm256_blend_epi32(mbuf_init,
> + _mm256_slli_si256(mbuf_flags, 4),
> + 0x04);
> + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
> + rearm0 = _mm256_blend_epi32(mbuf_init,
> + _mm256_srli_si256(mbuf_flags, 4),
> + 0x04);
> + /* permute to add in the rx_descriptor e.g. rss fields */
> + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
> + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
> + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
> + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
> + /* write to mbuf */
> + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
> + rearm6);
> + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
> + rearm4);
> + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
> + rearm2);
> + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
> + rearm0);
> +
> + /* repeat for the odd mbufs */
> + const __m256i odd_flags =
> + _mm256_castsi128_si256
> + (_mm256_extracti128_si256(mbuf_flags, 1));
> + rearm7 = _mm256_blend_epi32(mbuf_init,
> + _mm256_slli_si256(odd_flags, 8),
> + 0x04);
> + rearm5 = _mm256_blend_epi32(mbuf_init,
> + _mm256_slli_si256(odd_flags, 4),
> + 0x04);
> + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
> + rearm1 = _mm256_blend_epi32(mbuf_init,
> + _mm256_srli_si256(odd_flags, 4),
> + 0x04);
> + /* since odd mbufs are already in hi 128-bits use blend */
> + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
> + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
> + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
> + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
> + /* again write to mbufs */
> + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
> + rearm7);
> + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
> + rearm5);
> + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
> + rearm3);
> + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
> + rearm1);
> +
> + /* extract and record EOP bit */
> + if (split_packet) {
> + const __m128i eop_mask =
> + _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
> + const __m256i eop_bits256 = _mm256_and_si256(status0_7,
> + eop_check);
> + /* pack status bits into a single 128-bit register */
> + const __m128i eop_bits =
> + _mm_packus_epi32
> + (_mm256_castsi256_si128(eop_bits256),
> + _mm256_extractf128_si256(eop_bits256,
> + 1));
> + /**
> + * flip bits, and mask out the EOP bit, which is now
> + * a split-packet bit i.e. !EOP, rather than EOP one.
> + */
> + __m128i split_bits = _mm_andnot_si128(eop_bits,
> + eop_mask);
> + /**
> + * eop bits are out of order, so we need to shuffle them
> + * back into order again. In doing so, only use low 8
> + * bits, which acts like another pack instruction
> + * The original order is (hi->lo): 1,3,5,7,0,2,4,6
> + * [Since we use epi8, the 16-bit positions are
> + * multiplied by 2 in the eop_shuffle value.]
> + */
> + __m128i eop_shuffle =
> + _mm_set_epi8(/* zero hi 64b */
> + 0xFF, 0xFF, 0xFF, 0xFF,
> + 0xFF, 0xFF, 0xFF, 0xFF,
> + /* move values to lo 64b */
> + 8, 0, 10, 2,
> + 12, 4, 14, 6);
> + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
> + *(uint64_t *)split_packet =
> + _mm_cvtsi128_si64(split_bits);
> + split_packet += IAVF_DESCS_PER_LOOP_AVX;
> + }
> +
> + /* perform dd_check */
> + status0_7 = _mm256_and_si256(status0_7, dd_check);
> + status0_7 = _mm256_packs_epi32(status0_7,
> + _mm256_setzero_si256());
> +
> + uint64_t burst = __builtin_popcountll
> + (_mm_cvtsi128_si64
> + (_mm256_extracti128_si256
> + (status0_7, 1)));
> + burst += __builtin_popcountll
> + (_mm_cvtsi128_si64
> + (_mm256_castsi256_si128(status0_7)));
> + received += burst;
> + if (burst != IAVF_DESCS_PER_LOOP_AVX)
> + break;
> + }
> +
> + /* update tail pointers */
> + rxq->rx_tail += received;
> + rxq->rx_tail &= (rxq->nb_rx_desc - 1);
> + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
> + rxq->rx_tail--;
> + received--;
> + }
> + rxq->rxrearm_nb += received;
> + return received;
> +}
> +
> +/**
> + * Notice:
> + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
> + */
> +uint16_t
> +iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
> + uint16_t nb_pkts)
> +{
> + return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
> +}
> +
> +/**
> + * vPMD receive routine that reassembles single burst of 32 scattered packets
> + * Notice:
> + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
> + */
> +static uint16_t
> +iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
> + uint16_t nb_pkts)
> +{
> + struct iavf_rx_queue *rxq = rx_queue;
> + uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
> +
> + /* get some new buffers */
> + uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
> + split_flags);
> + if (nb_bufs == 0)
> + return 0;
> +
> + /* happy day case, full burst + no packets to be joined */
> + const uint64_t *split_fl64 = (uint64_t *)split_flags;
> +
> + if (!rxq->pkt_first_seg &&
> + split_fl64[0] == 0 && split_fl64[1] == 0 &&
> + split_fl64[2] == 0 && split_fl64[3] == 0)
> + return nb_bufs;
> +
> + /* reassemble any packets that need reassembly*/
> + unsigned int i = 0;
> +
> + if (!rxq->pkt_first_seg) {
> + /* find the first split flag, and only reassemble then*/
> + while (i < nb_bufs && !split_flags[i])
> + i++;
> + if (i == nb_bufs)
> + return nb_bufs;
> + rxq->pkt_first_seg = rx_pkts[i];
> + }
> + return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
> + &split_flags[i]);
> +}
> +
> +/**
> + * vPMD receive routine that reassembles scattered packets.
> + * Main receive routine that can handle arbitrary burst sizes
> + * Notice:
> + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
> + */
> +uint16_t
> +iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
> + uint16_t nb_pkts)
> +{
> + uint16_t retval = 0;
> +
> + while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
> + uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
> + rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
> + retval += burst;
> + nb_pkts -= burst;
> + if (burst < IAVF_VPMD_RX_MAX_BURST)
> + return retval;
> + }
> + return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
> + rx_pkts + retval, nb_pkts);
> +}
> +
> +static inline void
> +iavf_vtx1(volatile struct iavf_tx_desc *txdp,
> + struct rte_mbuf *pkt, uint64_t flags)
> +{
> + uint64_t high_qw =
> + (IAVF_TX_DESC_DTYPE_DATA |
> + ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) |
> + ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
> +
> + __m128i descriptor = _mm_set_epi64x(high_qw,
> + pkt->buf_physaddr + pkt->data_off);
> + _mm_store_si128((__m128i *)txdp, descriptor);
> +}
> +
> +static inline void
> +iavf_vtx(volatile struct iavf_tx_desc *txdp,
> + struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
> +{
> + const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
> + ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT));
> +
> + /* if unaligned on 32-bit boundary, do one to align */
> + if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
> + iavf_vtx1(txdp, *pkt, flags);
> + nb_pkts--, txdp++, pkt++;
> + }
> +
> + /* do two at a time while possible, in bursts */
> + for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
> + uint64_t hi_qw3 =
> + hi_qw_tmpl |
> + ((uint64_t)pkt[3]->data_len <<
> + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
> + uint64_t hi_qw2 =
> + hi_qw_tmpl |
> + ((uint64_t)pkt[2]->data_len <<
> + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
> + uint64_t hi_qw1 =
> + hi_qw_tmpl |
> + ((uint64_t)pkt[1]->data_len <<
> + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
> + uint64_t hi_qw0 =
> + hi_qw_tmpl |
> + ((uint64_t)pkt[0]->data_len <<
> + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
> +
> + __m256i desc2_3 =
> + _mm256_set_epi64x
> + (hi_qw3,
> + pkt[3]->buf_physaddr + pkt[3]->data_off,
> + hi_qw2,
> + pkt[2]->buf_physaddr + pkt[2]->data_off);
> + __m256i desc0_1 =
> + _mm256_set_epi64x
> + (hi_qw1,
> + pkt[1]->buf_physaddr + pkt[1]->data_off,
> + hi_qw0,
> + pkt[0]->buf_physaddr + pkt[0]->data_off);
> + _mm256_store_si256((void *)(txdp + 2), desc2_3);
> + _mm256_store_si256((void *)txdp, desc0_1);
> + }
> +
> + /* do any last ones */
> + while (nb_pkts) {
> + iavf_vtx1(txdp, *pkt, flags);
> + txdp++, pkt++, nb_pkts--;
> + }
> +}
> +
> +static inline uint16_t
> +iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
> + uint16_t nb_pkts)
> +{
> + struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
> + volatile struct iavf_tx_desc *txdp;
> + struct iavf_tx_entry *txep;
> + uint16_t n, nb_commit, tx_id;
> + uint64_t flags = IAVF_TX_DESC_CMD_EOP;
> + uint64_t rs = IAVF_TX_DESC_CMD_RS | IAVF_TX_DESC_CMD_EOP;
> +
> + /* cross rx_thresh boundary is not allowed */
> + nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
> +
> + if (txq->nb_free < txq->free_thresh)
> + iavf_tx_free_bufs(txq);
> +
> + nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
> + if (unlikely(nb_pkts == 0))
> + return 0;
> +
> + tx_id = txq->tx_tail;
> + txdp = &txq->tx_ring[tx_id];
> + txep = &txq->sw_ring[tx_id];
> +
> + txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
> +
> + n = (uint16_t)(txq->nb_tx_desc - tx_id);
> + if (nb_commit >= n) {
> + tx_backlog_entry(txep, tx_pkts, n);
> +
> + iavf_vtx(txdp, tx_pkts, n - 1, flags);
> + tx_pkts += (n - 1);
> + txdp += (n - 1);
> +
> + iavf_vtx1(txdp, *tx_pkts++, rs);
> +
> + nb_commit = (uint16_t)(nb_commit - n);
> +
> + tx_id = 0;
> + txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
> +
> + /* avoid reach the end of ring */
> + txdp = &txq->tx_ring[tx_id];
> + txep = &txq->sw_ring[tx_id];
> + }
> +
> + tx_backlog_entry(txep, tx_pkts, nb_commit);
> +
> + iavf_vtx(txdp, tx_pkts, nb_commit, flags);
> +
> + tx_id = (uint16_t)(tx_id + nb_commit);
> + if (tx_id > txq->next_rs) {
> + txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
> + rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
> + IAVF_TXD_QW1_CMD_SHIFT);
> + txq->next_rs =
> + (uint16_t)(txq->next_rs + txq->rs_thresh);
> + }
> +
> + txq->tx_tail = tx_id;
> +
> + IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
> +
> + return nb_pkts;
> +}
> +
> +uint16_t
> +iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
> + uint16_t nb_pkts)
> +{
> + uint16_t nb_tx = 0;
> + struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
> +
> + while (nb_pkts) {
> + uint16_t ret, num;
> +
> + num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
> + ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
> + num);
> + nb_tx += ret;
> + nb_pkts -= ret;
> + if (ret < num)
> + break;
> + }
> +
> + return nb_tx;
> +}
> diff --git a/drivers/net/iavf/iavf_rxtx_vec_common.h b/drivers/net/iavf/iavf_rxtx_vec_common.h
> index db509d71f..fff0555d2 100644
> --- a/drivers/net/iavf/iavf_rxtx_vec_common.h
> +++ b/drivers/net/iavf/iavf_rxtx_vec_common.h
> @@ -207,4 +207,76 @@ iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq)
> rxq->mbuf_initializer = *(uint64_t *)p;
> return 0;
> }
> +
> +static inline int
> +iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq)
> +{
> + if (!rxq)
> + return -1;
> +
> + if (!rte_is_power_of_2(rxq->nb_rx_desc))
> + return -1;
> +
> + if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST)
> + return -1;
> +
> + if (rxq->nb_rx_desc % rxq->rx_free_thresh)
> + return -1;
> +
> + return 0;
> +}
> +
> +#define IAVF_NO_VECTOR_FLAGS ( \
> + DEV_TX_OFFLOAD_MULTI_SEGS | \
> + DEV_TX_OFFLOAD_VLAN_INSERT | \
> + DEV_TX_OFFLOAD_SCTP_CKSUM | \
> + DEV_TX_OFFLOAD_UDP_CKSUM | \
> + DEV_TX_OFFLOAD_TCP_CKSUM)
> +
> +static inline int
> +iavf_tx_vec_queue_default(struct iavf_tx_queue *txq)
> +{
> + if (!txq)
> + return -1;
> +
> + if (txq->offloads & IAVF_NO_VECTOR_FLAGS)
> + return -1;
> +
> + if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST ||
> + txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF)
> + return -1;
> +
> + return 0;
> +}
> +
> +static inline int
> +iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev)
> +{
> + int i;
> + struct iavf_rx_queue *rxq;
> +
> + for (i = 0; i < dev->data->nb_rx_queues; i++) {
> + rxq = dev->data->rx_queues[i];
> + if (iavf_rx_vec_queue_default(rxq))
> + return -1;
> + }
> +
> + return 0;
> +}
> +
> +static inline int
> +iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev)
> +{
> + int i;
> + struct iavf_tx_queue *txq;
> +
> + for (i = 0; i < dev->data->nb_tx_queues; i++) {
> + txq = dev->data->tx_queues[i];
> + if (iavf_tx_vec_queue_default(txq))
> + return -1;
> + }
> +
> + return 0;
> +}
> +
> #endif
> diff --git a/drivers/net/iavf/iavf_rxtx_vec_sse.c b/drivers/net/iavf/iavf_rxtx_vec_sse.c
> index cc71f23a5..15c52a4c2 100644
> --- a/drivers/net/iavf/iavf_rxtx_vec_sse.c
> +++ b/drivers/net/iavf/iavf_rxtx_vec_sse.c
> @@ -655,3 +655,15 @@ iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
> rxq->ops = &sse_vec_rxq_ops;
> return iavf_rxq_vec_setup_default(rxq);
> }
> +
> +int __attribute__((cold))
> +iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
> +{
> + return iavf_rx_vec_dev_check_default(dev);
> +}
> +
> +int __attribute__((cold))
> +iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
> +{
> + return iavf_tx_vec_dev_check_default(dev);
> +}
> diff --git a/drivers/net/iavf/meson.build b/drivers/net/iavf/meson.build
> index e5a2f5553..c2401af86 100644
> --- a/drivers/net/iavf/meson.build
> +++ b/drivers/net/iavf/meson.build
> @@ -17,4 +17,21 @@ sources = files(
> if arch_subdir == 'x86'
> dpdk_conf.set('RTE_LIBRTE_IAVF_INC_VECTOR', 1)
> sources += files('iavf_rxtx_vec_sse.c')
> +
> + # compile AVX2 version if either:
> + # a. we have AVX supported in minimum instruction set baseline
> + # b. it's not minimum instruction set, but supported by compiler
> + if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2')
> + cflags += ['-DCC_AVX2_SUPPORT']
> + sources += files('iavf_rxtx_vec_avx2.c')
> + elif cc.has_argument('-mavx2')
> + cflags += ['-DCC_AVX2_SUPPORT']
> + iavf_avx2_lib = static_library('iavf_avx2_lib',
> + 'iavf_rxtx_vec_avx2.c',
> + dependencies: [static_rte_ethdev,
> + static_rte_kvargs, static_rte_hash],
> + include_directories: includes,
> + c_args: [cflags, '-mavx2'])
> + objs += iavf_avx2_lib.extract_objects('iavf_rxtx_vec_avx2.c')
> + endif
> endif
^ permalink raw reply [flat|nested] 3+ messages in thread
* [dpdk-dev] [PATCH] net/iavf: enable AVX2 for iavf
@ 2019-09-04 10:06 Leyi Rong
2019-09-04 13:29 ` Aaron Conole
0 siblings, 1 reply; 3+ messages in thread
From: Leyi Rong @ 2019-09-04 10:06 UTC (permalink / raw)
To: wenzhuo.lu, qi.z.zhang, xiaolong.ye; +Cc: dev, Leyi Rong
This patch enables AVX data path for iavf PMD.
Signed-off-by: Leyi Rong <leyi.rong@intel.com>
---
drivers/net/iavf/Makefile | 21 +
drivers/net/iavf/iavf_rxtx.c | 62 +-
drivers/net/iavf/iavf_rxtx.h | 10 +
drivers/net/iavf/iavf_rxtx_vec_avx2.c | 867 ++++++++++++++++++++++++
drivers/net/iavf/iavf_rxtx_vec_common.h | 72 ++
drivers/net/iavf/iavf_rxtx_vec_sse.c | 12 +
drivers/net/iavf/meson.build | 17 +
7 files changed, 1041 insertions(+), 20 deletions(-)
create mode 100644 drivers/net/iavf/iavf_rxtx_vec_avx2.c
diff --git a/drivers/net/iavf/Makefile b/drivers/net/iavf/Makefile
index cd74e14ab..cf0ed99f0 100644
--- a/drivers/net/iavf/Makefile
+++ b/drivers/net/iavf/Makefile
@@ -48,4 +48,25 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y)
SRCS-$(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR) += iavf_rxtx_vec_sse.c
endif
+ifeq ($(CONFIG_RTE_LIBRTE_IAVF_INC_VECTOR), y)
+ ifeq ($(findstring RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2)
+ CC_AVX2_SUPPORT=1
+ else
+ CC_AVX2_SUPPORT=\
+ $(shell $(CC) -march=core-avx2 -dM -E - </dev/null 2>&1 | \
+ grep -q AVX2 && echo 1)
+ ifeq ($(CC_AVX2_SUPPORT), 1)
+ ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y)
+ CFLAGS_iavf_rxtx_vec_avx2.o += -march=core-avx2
+ else
+ CFLAGS_iavf_rxtx_vec_avx2.o += -mavx2
+ endif
+ endif
+ endif
+endif
+
+ifeq ($(CC_AVX2_SUPPORT), 1)
+ SRCS-$(CONFIG_RTE_LIBRTE_IAVF_PMD) += iavf_rxtx_vec_avx2.c
+endif
+
include $(RTE_SDK)/mk/rte.lib.mk
diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c
index 22d7bb612..2eb496d5f 100644
--- a/drivers/net/iavf/iavf_rxtx.c
+++ b/drivers/net/iavf/iavf_rxtx.c
@@ -1743,23 +1743,36 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_rx_queue *rxq;
int i;
+ bool use_avx2 = false;
- if (adapter->rx_vec_allowed) {
- if (dev->data->scattered_rx) {
- PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback"
- " (port=%d).", dev->data->port_id);
- dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec;
- } else {
- PMD_DRV_LOG(DEBUG, "Using Vector Rx callback"
- " (port=%d).", dev->data->port_id);
- dev->rx_pkt_burst = iavf_recv_pkts_vec;
- }
+ if (!iavf_rx_vec_dev_check(dev)) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
- if (!rxq)
- continue;
- iavf_rxq_vec_setup(rxq);
+ (void)iavf_rxq_vec_setup(rxq);
}
+
+ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+ rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
+ use_avx2 = true;
+
+ if (dev->data->scattered_rx) {
+ PMD_DRV_LOG(DEBUG,
+ "Using %sVector Scattered Rx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+ dev->rx_pkt_burst = use_avx2 ?
+ iavf_recv_scattered_pkts_vec_avx2 :
+ iavf_recv_scattered_pkts_vec;
+ } else {
+ PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+ dev->rx_pkt_burst = use_avx2 ?
+ iavf_recv_pkts_vec_avx2 :
+ iavf_recv_pkts_vec;
+ }
+
+ return;
} else if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
dev->data->port_id);
@@ -1779,22 +1792,31 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
void
iavf_set_tx_function(struct rte_eth_dev *dev)
{
- struct iavf_adapter *adapter =
- IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_tx_queue *txq;
int i;
+ bool use_avx2 = false;
- if (adapter->tx_vec_allowed) {
- PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).",
- dev->data->port_id);
- dev->tx_pkt_burst = iavf_xmit_pkts_vec;
- dev->tx_pkt_prepare = NULL;
+ if (!iavf_tx_vec_dev_check(dev)) {
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
iavf_txq_vec_setup(txq);
}
+
+ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+ rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
+ use_avx2 = true;
+
+ PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+ dev->tx_pkt_burst = use_avx2 ?
+ iavf_xmit_pkts_vec_avx2 :
+ iavf_xmit_pkts_vec;
+ dev->tx_pkt_prepare = NULL;
+
+ return;
} else {
PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
dev->data->port_id);
diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h
index c86720bda..7dde392bf 100644
--- a/drivers/net/iavf/iavf_rxtx.h
+++ b/drivers/net/iavf/iavf_rxtx.h
@@ -19,6 +19,7 @@
/* used for Vector PMD */
#define IAVF_VPMD_RX_MAX_BURST 32
#define IAVF_VPMD_TX_MAX_BURST 32
+#define IAVF_RXQ_REARM_THRESH 32
#define IAVF_VPMD_DESCS_PER_LOOP 4
#define IAVF_VPMD_TX_MAX_FREE_BUF 64
@@ -200,6 +201,15 @@ uint16_t iavf_recv_scattered_pkts_vec(void *rx_queue,
uint16_t nb_pkts);
uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
+uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
+uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts);
+uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+int iavf_rx_vec_dev_check(struct rte_eth_dev *dev);
+int iavf_tx_vec_dev_check(struct rte_eth_dev *dev);
int iavf_rxq_vec_setup(struct iavf_rx_queue *rxq);
int iavf_txq_vec_setup(struct iavf_tx_queue *txq);
diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
new file mode 100644
index 000000000..f0c00be56
--- /dev/null
+++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c
@@ -0,0 +1,867 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2019 Intel Corporation
+ */
+
+#include "base/iavf_prototype.h"
+#include "iavf_rxtx_vec_common.h"
+
+#include <x86intrin.h>
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+static inline void
+iavf_rxq_rearm(struct iavf_rx_queue *rxq)
+{
+ int i;
+ uint16_t rx_id;
+ volatile union iavf_rx_desc *rxdp;
+ struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
+
+ rxdp = rxq->rx_ring + rxq->rxrearm_start;
+
+ /* Pull 'n' more MBUFs into the software ring */
+ if (rte_mempool_get_bulk(rxq->mp,
+ (void *)rxp,
+ IAVF_RXQ_REARM_THRESH) < 0) {
+ if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
+ rxq->nb_rx_desc) {
+ __m128i dma_addr0;
+
+ dma_addr0 = _mm_setzero_si128();
+ for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
+ rxp[i] = &rxq->fake_mbuf;
+ _mm_store_si128((__m128i *)&rxdp[i].read,
+ dma_addr0);
+ }
+ }
+ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
+ IAVF_RXQ_REARM_THRESH;
+ return;
+ }
+
+#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
+ struct rte_mbuf *mb0, *mb1;
+ __m128i dma_addr0, dma_addr1;
+ __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
+ RTE_PKTMBUF_HEADROOM);
+ /* Initialize the mbufs in vector, process 2 mbufs in one loop */
+ for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
+ __m128i vaddr0, vaddr1;
+
+ mb0 = rxp[0];
+ mb1 = rxp[1];
+
+ /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
+ offsetof(struct rte_mbuf, buf_addr) + 8);
+ vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
+ vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
+
+ /* convert pa to dma_addr hdr/data */
+ dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
+ dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
+
+ /* add headroom to pa values */
+ dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
+ dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
+
+ /* flush desc with pa dma_addr */
+ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
+ _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
+ }
+#else
+ struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
+ __m256i dma_addr0_1, dma_addr2_3;
+ __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
+ /* Initialize the mbufs in vector, process 4 mbufs in one loop */
+ for (i = 0; i < IAVF_RXQ_REARM_THRESH;
+ i += 4, rxp += 4, rxdp += 4) {
+ __m128i vaddr0, vaddr1, vaddr2, vaddr3;
+ __m256i vaddr0_1, vaddr2_3;
+
+ mb0 = rxp[0];
+ mb1 = rxp[1];
+ mb2 = rxp[2];
+ mb3 = rxp[3];
+
+ /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
+ offsetof(struct rte_mbuf, buf_addr) + 8);
+ vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
+ vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
+ vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
+ vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
+
+ /**
+ * merge 0 & 1, by casting 0 to 256-bit and inserting 1
+ * into the high lanes. Similarly for 2 & 3
+ */
+ vaddr0_1 =
+ _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
+ vaddr1, 1);
+ vaddr2_3 =
+ _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
+ vaddr3, 1);
+
+ /* convert pa to dma_addr hdr/data */
+ dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
+ dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
+
+ /* add headroom to pa values */
+ dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
+ dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
+
+ /* flush desc with pa dma_addr */
+ _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
+ _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
+ }
+
+#endif
+
+ rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
+ if (rxq->rxrearm_start >= rxq->nb_rx_desc)
+ rxq->rxrearm_start = 0;
+
+ rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
+
+ rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
+ (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
+
+ /* Update the tail pointer on the NIC */
+ IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+}
+
+#define PKTLEN_SHIFT 10
+
+static inline uint16_t
+_iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts, uint8_t *split_packet)
+{
+#define IAVF_DESCS_PER_LOOP_AVX 8
+
+ /* const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; */
+ static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
+ /* [0] reserved */
+ [1] = RTE_PTYPE_L2_ETHER,
+ /* [2] - [21] reserved */
+ [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_NONFRAG,
+ [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_UDP,
+ /* [25] reserved */
+ [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_TCP,
+ [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_SCTP,
+ [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_ICMP,
+ /* All others reserved */
+ };
+ const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
+ 0, rxq->mbuf_initializer);
+ /* struct iavf_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; */
+ struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
+ volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
+ const int avx_aligned = ((rxq->rx_tail & 1) == 0);
+
+ rte_prefetch0(rxdp);
+
+ /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
+ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
+
+ /* See if we need to rearm the RX queue - gives the prefetch a bit
+ * of time to act
+ */
+ if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
+ iavf_rxq_rearm(rxq);
+
+ /* Before we start moving massive data around, check to see if
+ * there is actually a packet available
+ */
+ if (!(rxdp->wb.qword1.status_error_len &
+ rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
+ return 0;
+
+ /* constants used in processing loop */
+ const __m256i crc_adjust =
+ _mm256_set_epi16
+ (/* first descriptor */
+ 0, 0, 0, /* ignore non-length fields */
+ -rxq->crc_len, /* sub crc on data_len */
+ 0, /* ignore high-16bits of pkt_len */
+ -rxq->crc_len, /* sub crc on pkt_len */
+ 0, 0, /* ignore pkt_type field */
+ /* second descriptor */
+ 0, 0, 0, /* ignore non-length fields */
+ -rxq->crc_len, /* sub crc on data_len */
+ 0, /* ignore high-16bits of pkt_len */
+ -rxq->crc_len, /* sub crc on pkt_len */
+ 0, 0 /* ignore pkt_type field */
+ );
+
+ /* 8 packets DD mask, LSB in each 32-bit value */
+ const __m256i dd_check = _mm256_set1_epi32(1);
+
+ /* 8 packets EOP mask, second-LSB in each 32-bit value */
+ const __m256i eop_check = _mm256_slli_epi32(dd_check,
+ IAVF_RX_DESC_STATUS_EOF_SHIFT);
+
+ /* mask to shuffle from desc. to mbuf (2 descriptors)*/
+ const __m256i shuf_msk =
+ _mm256_set_epi8
+ (/* first descriptor */
+ 7, 6, 5, 4, /* octet 4~7, 32bits rss */
+ 3, 2, /* octet 2~3, low 16 bits vlan_macip */
+ 15, 14, /* octet 15~14, 16 bits data_len */
+ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
+ 15, 14, /* octet 15~14, low 16 bits pkt_len */
+ 0xFF, 0xFF, /* pkt_type set as unknown */
+ 0xFF, 0xFF, /*pkt_type set as unknown */
+ /* second descriptor */
+ 7, 6, 5, 4, /* octet 4~7, 32bits rss */
+ 3, 2, /* octet 2~3, low 16 bits vlan_macip */
+ 15, 14, /* octet 15~14, 16 bits data_len */
+ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
+ 15, 14, /* octet 15~14, low 16 bits pkt_len */
+ 0xFF, 0xFF, /* pkt_type set as unknown */
+ 0xFF, 0xFF /*pkt_type set as unknown */
+ );
+ /**
+ * compile-time check the above crc and shuffle layout is correct.
+ * NOTE: the first field (lowest address) is given last in set_epi
+ * calls above.
+ */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+ /* Status/Error flag masks */
+ /**
+ * mask everything except RSS, flow director and VLAN flags
+ * bit2 is for VLAN tag, bit11 for flow director indication
+ * bit13:12 for RSS indication. Bits 3-5 of error
+ * field (bits 22-24) are for IP/L4 checksum errors
+ */
+ const __m256i flags_mask =
+ _mm256_set1_epi32((1 << 2) | (1 << 11) |
+ (3 << 12) | (7 << 22));
+ /**
+ * data to be shuffled by result of flag mask. If VLAN bit is set,
+ * (bit 2), then position 4 in this array will be used in the
+ * destination
+ */
+ const __m256i vlan_flags_shuf =
+ _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
+ 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
+ /**
+ * data to be shuffled by result of flag mask, shifted down 11.
+ * If RSS/FDIR bits are set, shuffle moves appropriate flags in
+ * place.
+ */
+ const __m256i rss_flags_shuf =
+ _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+ PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
+ 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
+ 0, 0, 0, 0, PKT_RX_FDIR, 0);
+
+ /**
+ * data to be shuffled by the result of the flags mask shifted by 22
+ * bits. This gives use the l3_l4 flags.
+ */
+ const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
+ /* shift right 1 bit to make sure it not exceed 255 */
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_BAD) >> 1,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+ PKT_RX_IP_CKSUM_BAD >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
+ /* second 128-bits */
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_BAD) >> 1,
+ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
+ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
+ PKT_RX_IP_CKSUM_BAD >> 1,
+ (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
+
+ const __m256i cksum_mask =
+ _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
+ PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
+ PKT_RX_EIP_CKSUM_BAD);
+
+ RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
+
+ uint16_t i, received;
+
+ for (i = 0, received = 0; i < nb_pkts;
+ i += IAVF_DESCS_PER_LOOP_AVX,
+ rxdp += IAVF_DESCS_PER_LOOP_AVX) {
+ /* step 1, copy over 8 mbuf pointers to rx_pkts array */
+ _mm256_storeu_si256((void *)&rx_pkts[i],
+ _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+ _mm256_storeu_si256
+ ((void *)&rx_pkts[i + 4],
+ _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+ __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
+#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
+ /* for AVX we need alignment otherwise loads are not atomic */
+ if (avx_aligned) {
+ /* load in descriptors, 2 at a time, in reverse order */
+ raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
+ rte_compiler_barrier();
+ raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
+ rte_compiler_barrier();
+ raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
+ rte_compiler_barrier();
+ raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
+ } else
+#endif
+ {
+ const __m128i raw_desc7 =
+ _mm_load_si128((void *)(rxdp + 7));
+ rte_compiler_barrier();
+ const __m128i raw_desc6 =
+ _mm_load_si128((void *)(rxdp + 6));
+ rte_compiler_barrier();
+ const __m128i raw_desc5 =
+ _mm_load_si128((void *)(rxdp + 5));
+ rte_compiler_barrier();
+ const __m128i raw_desc4 =
+ _mm_load_si128((void *)(rxdp + 4));
+ rte_compiler_barrier();
+ const __m128i raw_desc3 =
+ _mm_load_si128((void *)(rxdp + 3));
+ rte_compiler_barrier();
+ const __m128i raw_desc2 =
+ _mm_load_si128((void *)(rxdp + 2));
+ rte_compiler_barrier();
+ const __m128i raw_desc1 =
+ _mm_load_si128((void *)(rxdp + 1));
+ rte_compiler_barrier();
+ const __m128i raw_desc0 =
+ _mm_load_si128((void *)(rxdp + 0));
+
+ raw_desc6_7 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc6),
+ raw_desc7, 1);
+ raw_desc4_5 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc4),
+ raw_desc5, 1);
+ raw_desc2_3 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc2),
+ raw_desc3, 1);
+ raw_desc0_1 =
+ _mm256_inserti128_si256
+ (_mm256_castsi128_si256(raw_desc0),
+ raw_desc1, 1);
+ }
+
+ if (split_packet) {
+ int j;
+
+ for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
+ rte_mbuf_prefetch_part2(rx_pkts[i + j]);
+ }
+
+ /**
+ * convert descriptors 4-7 into mbufs, adjusting length and
+ * re-arranging fields. Then write into the mbuf
+ */
+ const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
+ PKTLEN_SHIFT);
+ const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
+ PKTLEN_SHIFT);
+ const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
+ len6_7, 0x80);
+ const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
+ len4_5, 0x80);
+ __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
+ __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
+
+ mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
+ mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
+ /**
+ * to get packet types, shift 64-bit values down 30 bits
+ * and so ptype is in lower 8-bits in each
+ */
+ const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
+ const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
+ const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
+ const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
+ const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
+ const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
+
+ mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
+ mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
+ mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
+ mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
+ /* merge the status bits into one register */
+ const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
+ desc4_5);
+
+ /**
+ * convert descriptors 0-3 into mbufs, adjusting length and
+ * re-arranging fields. Then write into the mbuf
+ */
+ const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
+ PKTLEN_SHIFT);
+ const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
+ PKTLEN_SHIFT);
+ const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
+ len2_3, 0x80);
+ const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
+ len0_1, 0x80);
+ __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
+ __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
+
+ mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
+ mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
+ /* get the packet types */
+ const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
+ const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
+ const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
+ const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
+ const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
+ const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
+
+ mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
+ mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
+ mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
+ mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
+ /* merge the status bits into one register */
+ const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
+ desc0_1);
+
+ /**
+ * take the two sets of status bits and merge to one
+ * After merge, the packets status flags are in the
+ * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+ */
+ __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
+ status0_3);
+
+ /* now do flag manipulation */
+
+ /* get only flag/error bits we want */
+ const __m256i flag_bits =
+ _mm256_and_si256(status0_7, flags_mask);
+ /* set vlan and rss flags */
+ const __m256i vlan_flags =
+ _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
+ const __m256i rss_flags =
+ _mm256_shuffle_epi8(rss_flags_shuf,
+ _mm256_srli_epi32(flag_bits, 11));
+ /**
+ * l3_l4_error flags, shuffle, then shift to correct adjustment
+ * of flags in flags_shuf, and finally mask out extra bits
+ */
+ __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+ _mm256_srli_epi32(flag_bits, 22));
+ l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+ l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+
+ /* merge flags */
+ const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
+ _mm256_or_si256(rss_flags, vlan_flags));
+ /**
+ * At this point, we have the 8 sets of flags in the low 16-bits
+ * of each 32-bit value in vlan0.
+ * We want to extract these, and merge them with the mbuf init
+ * data so we can do a single write to the mbuf to set the flags
+ * and all the other initialization fields. Extracting the
+ * appropriate flags means that we have to do a shift and blend
+ * for each mbuf before we do the write. However, we can also
+ * add in the previously computed rx_descriptor fields to
+ * make a single 256-bit write per mbuf
+ */
+ /* check the structure matches expectations */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+ offsetof(struct rte_mbuf, rearm_data) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+ RTE_ALIGN(offsetof(struct rte_mbuf,
+ rearm_data),
+ 16));
+ /* build up data and do writes */
+ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+ rearm6, rearm7;
+ rearm6 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(mbuf_flags, 8),
+ 0x04);
+ rearm4 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(mbuf_flags, 4),
+ 0x04);
+ rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
+ rearm0 = _mm256_blend_epi32(mbuf_init,
+ _mm256_srli_si256(mbuf_flags, 4),
+ 0x04);
+ /* permute to add in the rx_descriptor e.g. rss fields */
+ rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+ rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+ rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+ rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+ /* write to mbuf */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
+ rearm6);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
+ rearm4);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
+ rearm2);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
+ rearm0);
+
+ /* repeat for the odd mbufs */
+ const __m256i odd_flags =
+ _mm256_castsi128_si256
+ (_mm256_extracti128_si256(mbuf_flags, 1));
+ rearm7 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(odd_flags, 8),
+ 0x04);
+ rearm5 = _mm256_blend_epi32(mbuf_init,
+ _mm256_slli_si256(odd_flags, 4),
+ 0x04);
+ rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
+ rearm1 = _mm256_blend_epi32(mbuf_init,
+ _mm256_srli_si256(odd_flags, 4),
+ 0x04);
+ /* since odd mbufs are already in hi 128-bits use blend */
+ rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+ rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+ rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+ rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+ /* again write to mbufs */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
+ rearm7);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
+ rearm5);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
+ rearm3);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
+ rearm1);
+
+ /* extract and record EOP bit */
+ if (split_packet) {
+ const __m128i eop_mask =
+ _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
+ const __m256i eop_bits256 = _mm256_and_si256(status0_7,
+ eop_check);
+ /* pack status bits into a single 128-bit register */
+ const __m128i eop_bits =
+ _mm_packus_epi32
+ (_mm256_castsi256_si128(eop_bits256),
+ _mm256_extractf128_si256(eop_bits256,
+ 1));
+ /**
+ * flip bits, and mask out the EOP bit, which is now
+ * a split-packet bit i.e. !EOP, rather than EOP one.
+ */
+ __m128i split_bits = _mm_andnot_si128(eop_bits,
+ eop_mask);
+ /**
+ * eop bits are out of order, so we need to shuffle them
+ * back into order again. In doing so, only use low 8
+ * bits, which acts like another pack instruction
+ * The original order is (hi->lo): 1,3,5,7,0,2,4,6
+ * [Since we use epi8, the 16-bit positions are
+ * multiplied by 2 in the eop_shuffle value.]
+ */
+ __m128i eop_shuffle =
+ _mm_set_epi8(/* zero hi 64b */
+ 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF,
+ /* move values to lo 64b */
+ 8, 0, 10, 2,
+ 12, 4, 14, 6);
+ split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
+ *(uint64_t *)split_packet =
+ _mm_cvtsi128_si64(split_bits);
+ split_packet += IAVF_DESCS_PER_LOOP_AVX;
+ }
+
+ /* perform dd_check */
+ status0_7 = _mm256_and_si256(status0_7, dd_check);
+ status0_7 = _mm256_packs_epi32(status0_7,
+ _mm256_setzero_si256());
+
+ uint64_t burst = __builtin_popcountll
+ (_mm_cvtsi128_si64
+ (_mm256_extracti128_si256
+ (status0_7, 1)));
+ burst += __builtin_popcountll
+ (_mm_cvtsi128_si64
+ (_mm256_castsi256_si128(status0_7)));
+ received += burst;
+ if (burst != IAVF_DESCS_PER_LOOP_AVX)
+ break;
+ }
+
+ /* update tail pointers */
+ rxq->rx_tail += received;
+ rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+ if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
+ rxq->rx_tail--;
+ received--;
+ }
+ rxq->rxrearm_nb += received;
+ return received;
+}
+
+/**
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
+}
+
+/**
+ * vPMD receive routine that reassembles single burst of 32 scattered packets
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+static uint16_t
+iavf_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct iavf_rx_queue *rxq = rx_queue;
+ uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
+
+ /* get some new buffers */
+ uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
+ split_flags);
+ if (nb_bufs == 0)
+ return 0;
+
+ /* happy day case, full burst + no packets to be joined */
+ const uint64_t *split_fl64 = (uint64_t *)split_flags;
+
+ if (!rxq->pkt_first_seg &&
+ split_fl64[0] == 0 && split_fl64[1] == 0 &&
+ split_fl64[2] == 0 && split_fl64[3] == 0)
+ return nb_bufs;
+
+ /* reassemble any packets that need reassembly*/
+ unsigned int i = 0;
+
+ if (!rxq->pkt_first_seg) {
+ /* find the first split flag, and only reassemble then*/
+ while (i < nb_bufs && !split_flags[i])
+ i++;
+ if (i == nb_bufs)
+ return nb_bufs;
+ rxq->pkt_first_seg = rx_pkts[i];
+ }
+ return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
+ &split_flags[i]);
+}
+
+/**
+ * vPMD receive routine that reassembles scattered packets.
+ * Main receive routine that can handle arbitrary burst sizes
+ * Notice:
+ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t retval = 0;
+
+ while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
+ uint16_t burst = iavf_recv_scattered_burst_vec_avx2(rx_queue,
+ rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
+ retval += burst;
+ nb_pkts -= burst;
+ if (burst < IAVF_VPMD_RX_MAX_BURST)
+ return retval;
+ }
+ return retval + iavf_recv_scattered_burst_vec_avx2(rx_queue,
+ rx_pkts + retval, nb_pkts);
+}
+
+static inline void
+iavf_vtx1(volatile struct iavf_tx_desc *txdp,
+ struct rte_mbuf *pkt, uint64_t flags)
+{
+ uint64_t high_qw =
+ (IAVF_TX_DESC_DTYPE_DATA |
+ ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) |
+ ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
+
+ __m128i descriptor = _mm_set_epi64x(high_qw,
+ pkt->buf_physaddr + pkt->data_off);
+ _mm_store_si128((__m128i *)txdp, descriptor);
+}
+
+static inline void
+iavf_vtx(volatile struct iavf_tx_desc *txdp,
+ struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
+{
+ const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA |
+ ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT));
+
+ /* if unaligned on 32-bit boundary, do one to align */
+ if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
+ iavf_vtx1(txdp, *pkt, flags);
+ nb_pkts--, txdp++, pkt++;
+ }
+
+ /* do two at a time while possible, in bursts */
+ for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
+ uint64_t hi_qw3 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[3]->data_len <<
+ IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+ uint64_t hi_qw2 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[2]->data_len <<
+ IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+ uint64_t hi_qw1 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[1]->data_len <<
+ IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+ uint64_t hi_qw0 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[0]->data_len <<
+ IAVF_TXD_QW1_TX_BUF_SZ_SHIFT);
+
+ __m256i desc2_3 =
+ _mm256_set_epi64x
+ (hi_qw3,
+ pkt[3]->buf_physaddr + pkt[3]->data_off,
+ hi_qw2,
+ pkt[2]->buf_physaddr + pkt[2]->data_off);
+ __m256i desc0_1 =
+ _mm256_set_epi64x
+ (hi_qw1,
+ pkt[1]->buf_physaddr + pkt[1]->data_off,
+ hi_qw0,
+ pkt[0]->buf_physaddr + pkt[0]->data_off);
+ _mm256_store_si256((void *)(txdp + 2), desc2_3);
+ _mm256_store_si256((void *)txdp, desc0_1);
+ }
+
+ /* do any last ones */
+ while (nb_pkts) {
+ iavf_vtx1(txdp, *pkt, flags);
+ txdp++, pkt++, nb_pkts--;
+ }
+}
+
+static inline uint16_t
+iavf_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
+ volatile struct iavf_tx_desc *txdp;
+ struct iavf_tx_entry *txep;
+ uint16_t n, nb_commit, tx_id;
+ uint64_t flags = IAVF_TX_DESC_CMD_EOP;
+ uint64_t rs = IAVF_TX_DESC_CMD_RS | IAVF_TX_DESC_CMD_EOP;
+
+ /* cross rx_thresh boundary is not allowed */
+ nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
+
+ if (txq->nb_free < txq->free_thresh)
+ iavf_tx_free_bufs(txq);
+
+ nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
+ if (unlikely(nb_pkts == 0))
+ return 0;
+
+ tx_id = txq->tx_tail;
+ txdp = &txq->tx_ring[tx_id];
+ txep = &txq->sw_ring[tx_id];
+
+ txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
+
+ n = (uint16_t)(txq->nb_tx_desc - tx_id);
+ if (nb_commit >= n) {
+ tx_backlog_entry(txep, tx_pkts, n);
+
+ iavf_vtx(txdp, tx_pkts, n - 1, flags);
+ tx_pkts += (n - 1);
+ txdp += (n - 1);
+
+ iavf_vtx1(txdp, *tx_pkts++, rs);
+
+ nb_commit = (uint16_t)(nb_commit - n);
+
+ tx_id = 0;
+ txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
+
+ /* avoid reach the end of ring */
+ txdp = &txq->tx_ring[tx_id];
+ txep = &txq->sw_ring[tx_id];
+ }
+
+ tx_backlog_entry(txep, tx_pkts, nb_commit);
+
+ iavf_vtx(txdp, tx_pkts, nb_commit, flags);
+
+ tx_id = (uint16_t)(tx_id + nb_commit);
+ if (tx_id > txq->next_rs) {
+ txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
+ IAVF_TXD_QW1_CMD_SHIFT);
+ txq->next_rs =
+ (uint16_t)(txq->next_rs + txq->rs_thresh);
+ }
+
+ txq->tx_tail = tx_id;
+
+ IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+
+ return nb_pkts;
+}
+
+uint16_t
+iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t nb_tx = 0;
+ struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
+
+ while (nb_pkts) {
+ uint16_t ret, num;
+
+ num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
+ ret = iavf_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
+ num);
+ nb_tx += ret;
+ nb_pkts -= ret;
+ if (ret < num)
+ break;
+ }
+
+ return nb_tx;
+}
diff --git a/drivers/net/iavf/iavf_rxtx_vec_common.h b/drivers/net/iavf/iavf_rxtx_vec_common.h
index db509d71f..fff0555d2 100644
--- a/drivers/net/iavf/iavf_rxtx_vec_common.h
+++ b/drivers/net/iavf/iavf_rxtx_vec_common.h
@@ -207,4 +207,76 @@ iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq)
rxq->mbuf_initializer = *(uint64_t *)p;
return 0;
}
+
+static inline int
+iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq)
+{
+ if (!rxq)
+ return -1;
+
+ if (!rte_is_power_of_2(rxq->nb_rx_desc))
+ return -1;
+
+ if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST)
+ return -1;
+
+ if (rxq->nb_rx_desc % rxq->rx_free_thresh)
+ return -1;
+
+ return 0;
+}
+
+#define IAVF_NO_VECTOR_FLAGS ( \
+ DEV_TX_OFFLOAD_MULTI_SEGS | \
+ DEV_TX_OFFLOAD_VLAN_INSERT | \
+ DEV_TX_OFFLOAD_SCTP_CKSUM | \
+ DEV_TX_OFFLOAD_UDP_CKSUM | \
+ DEV_TX_OFFLOAD_TCP_CKSUM)
+
+static inline int
+iavf_tx_vec_queue_default(struct iavf_tx_queue *txq)
+{
+ if (!txq)
+ return -1;
+
+ if (txq->offloads & IAVF_NO_VECTOR_FLAGS)
+ return -1;
+
+ if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST ||
+ txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF)
+ return -1;
+
+ return 0;
+}
+
+static inline int
+iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev)
+{
+ int i;
+ struct iavf_rx_queue *rxq;
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ if (iavf_rx_vec_queue_default(rxq))
+ return -1;
+ }
+
+ return 0;
+}
+
+static inline int
+iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev)
+{
+ int i;
+ struct iavf_tx_queue *txq;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ if (iavf_tx_vec_queue_default(txq))
+ return -1;
+ }
+
+ return 0;
+}
+
#endif
diff --git a/drivers/net/iavf/iavf_rxtx_vec_sse.c b/drivers/net/iavf/iavf_rxtx_vec_sse.c
index cc71f23a5..15c52a4c2 100644
--- a/drivers/net/iavf/iavf_rxtx_vec_sse.c
+++ b/drivers/net/iavf/iavf_rxtx_vec_sse.c
@@ -655,3 +655,15 @@ iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
rxq->ops = &sse_vec_rxq_ops;
return iavf_rxq_vec_setup_default(rxq);
}
+
+int __attribute__((cold))
+iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
+{
+ return iavf_rx_vec_dev_check_default(dev);
+}
+
+int __attribute__((cold))
+iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
+{
+ return iavf_tx_vec_dev_check_default(dev);
+}
diff --git a/drivers/net/iavf/meson.build b/drivers/net/iavf/meson.build
index e5a2f5553..c2401af86 100644
--- a/drivers/net/iavf/meson.build
+++ b/drivers/net/iavf/meson.build
@@ -17,4 +17,21 @@ sources = files(
if arch_subdir == 'x86'
dpdk_conf.set('RTE_LIBRTE_IAVF_INC_VECTOR', 1)
sources += files('iavf_rxtx_vec_sse.c')
+
+ # compile AVX2 version if either:
+ # a. we have AVX supported in minimum instruction set baseline
+ # b. it's not minimum instruction set, but supported by compiler
+ if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2')
+ cflags += ['-DCC_AVX2_SUPPORT']
+ sources += files('iavf_rxtx_vec_avx2.c')
+ elif cc.has_argument('-mavx2')
+ cflags += ['-DCC_AVX2_SUPPORT']
+ iavf_avx2_lib = static_library('iavf_avx2_lib',
+ 'iavf_rxtx_vec_avx2.c',
+ dependencies: [static_rte_ethdev,
+ static_rte_kvargs, static_rte_hash],
+ include_directories: includes,
+ c_args: [cflags, '-mavx2'])
+ objs += iavf_avx2_lib.extract_objects('iavf_rxtx_vec_avx2.c')
+ endif
endif
--
2.17.1
^ permalink raw reply [flat|nested] 3+ messages in thread
end of thread, other threads:[~2019-09-04 13:29 UTC | newest]
Thread overview: 3+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2019-09-04 7:21 [dpdk-dev] [PATCH] net/iavf: enable AVX2 for iavf Leyi Rong
2019-09-04 10:06 Leyi Rong
2019-09-04 13:29 ` Aaron Conole
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).