From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from dpdk.org (dpdk.org [92.243.14.124]) by inbox.dpdk.org (Postfix) with ESMTP id 23196A0559; Mon, 16 Mar 2020 08:58:26 +0100 (CET) Received: from [92.243.14.124] (localhost [127.0.0.1]) by dpdk.org (Postfix) with ESMTP id 63D001C0BE; Mon, 16 Mar 2020 08:57:35 +0100 (CET) Received: from mga18.intel.com (mga18.intel.com [134.134.136.126]) by dpdk.org (Postfix) with ESMTP id C67071C0AC for ; Mon, 16 Mar 2020 08:57:31 +0100 (CET) IronPort-SDR: FqdXICpMS6q+KDKgUf3dt3umKkOnXIhZdZs7dB0Qjsgy5L+uLzu7bEn1wTq2qxej4+xxZP5dDe 7IcDi9Cf8Dbw== X-Amp-Result: SKIPPED(no attachment in message) X-Amp-File-Uploaded: False Received: from orsmga004.jf.intel.com ([10.7.209.38]) by orsmga106.jf.intel.com with ESMTP/TLS/ECDHE-RSA-AES256-GCM-SHA384; 16 Mar 2020 00:57:30 -0700 IronPort-SDR: 2CW8XQY0SPa9B7HbERKuRtZQ/84sH5K2UysdUV4PfZRfKi9JBS2SZk0eaYqEQcpeR/iZxs0Vp2 Us3gHiZF9eFQ== X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.70,559,1574150400"; d="scan'208";a="390622514" Received: from dpdk-lrong-srv-04.sh.intel.com ([10.67.119.221]) by orsmga004.jf.intel.com with ESMTP; 16 Mar 2020 00:57:29 -0700 From: Leyi Rong To: qi.z.zhang@intel.com, xiaolong.ye@intel.com Cc: dev@dpdk.org, Leyi Rong Date: Mon, 16 Mar 2020 15:45:56 +0800 Message-Id: <20200316074603.10998-6-leyi.rong@intel.com> X-Mailer: git-send-email 2.17.1 In-Reply-To: <20200316074603.10998-1-leyi.rong@intel.com> References: <20200316074603.10998-1-leyi.rong@intel.com> Subject: [dpdk-dev] [PATCH 05/12] net/iavf: flexible Rx descriptor support in AVX path X-BeenThere: dev@dpdk.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: DPDK patches and discussions List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: dev-bounces@dpdk.org Sender: "dev" Support flexible Rx descriptor format in AVX path of iAVF PMD. Signed-off-by: Leyi Rong --- drivers/net/iavf/iavf_rxtx.c | 24 +- drivers/net/iavf/iavf_rxtx.h | 6 + drivers/net/iavf/iavf_rxtx_vec_avx2.c | 550 +++++++++++++++++++++++++- 3 files changed, 570 insertions(+), 10 deletions(-) diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c index b9b35bdbb..57fffece9 100644 --- a/drivers/net/iavf/iavf_rxtx.c +++ b/drivers/net/iavf/iavf_rxtx.c @@ -2115,16 +2115,28 @@ iavf_set_rx_function(struct rte_eth_dev *dev) "Using %sVector Scattered Rx (port %d).", use_avx2 ? "avx2 " : "", dev->data->port_id); - dev->rx_pkt_burst = use_avx2 ? - iavf_recv_scattered_pkts_vec_avx2 : - iavf_recv_scattered_pkts_vec; + if (vf->vf_res->vf_cap_flags & + VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) + dev->rx_pkt_burst = use_avx2 ? + iavf_recv_scattered_pkts_vec_avx2_flex_rxd : + iavf_recv_scattered_pkts_vec; + else + dev->rx_pkt_burst = use_avx2 ? + iavf_recv_scattered_pkts_vec_avx2 : + iavf_recv_scattered_pkts_vec; } else { PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).", use_avx2 ? "avx2 " : "", dev->data->port_id); - dev->rx_pkt_burst = use_avx2 ? - iavf_recv_pkts_vec_avx2 : - iavf_recv_pkts_vec; + if (vf->vf_res->vf_cap_flags & + VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) + dev->rx_pkt_burst = use_avx2 ? + iavf_recv_pkts_vec_avx2_flex_rxd : + iavf_recv_pkts_vec; + else + dev->rx_pkt_burst = use_avx2 ? + iavf_recv_pkts_vec_avx2 : + iavf_recv_pkts_vec; } return; diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h index ee306d400..de13fd516 100644 --- a/drivers/net/iavf/iavf_rxtx.h +++ b/drivers/net/iavf/iavf_rxtx.h @@ -212,9 +212,15 @@ uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); +uint16_t iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); +uint16_t iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); uint16_t iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c b/drivers/net/iavf/iavf_rxtx_vec_avx2.c index 4e1231162..74f672c7e 100644 --- a/drivers/net/iavf/iavf_rxtx_vec_avx2.c +++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c @@ -11,14 +11,16 @@ #endif static inline void -iavf_rxq_rearm(struct iavf_rx_queue *rxq) +iavf_rxq_rearm(struct iavf_rx_queue *rxq, volatile union iavf_rx_desc *rxdp) { int i; uint16_t rx_id; - volatile union iavf_rx_desc *rxdp; struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start]; - rxdp = rxq->rx_ring + rxq->rxrearm_start; + if (rxq->rxdid == IAVF_RXDID_COMMS_OVS_1) { + volatile union iavf_rx_flex_desc *rxdp = + (union iavf_rx_flex_desc *)rxdp; + } /* Pull 'n' more MBUFs into the software ring */ if (rte_mempool_get_bulk(rxq->mp, @@ -110,7 +112,7 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq, * of time to act */ if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH) - iavf_rxq_rearm(rxq); + iavf_rxq_rearm(rxq, rxq->rx_ring + rxq->rxrearm_start); /* Before we start moving massive data around, check to see if * there is actually a packet available @@ -548,6 +550,465 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq, return received; } +static inline uint16_t +_iavf_recv_raw_pkts_vec_avx2_flex_rxd(struct iavf_rx_queue *rxq, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, uint8_t *split_packet) +{ +#define IAVF_DESCS_PER_LOOP_AVX 8 + + const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl; + + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, + 0, rxq->mbuf_initializer); + struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail]; + volatile union iavf_rx_flex_desc *rxdp = + (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail; + + rte_prefetch0(rxdp); + + /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */ + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX); + + /* See if we need to rearm the RX queue - gives the prefetch a bit + * of time to act + */ + if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH) + /* iavf_rxq_rearm(rxq); */ + iavf_rxq_rearm(rxq, rxq->rx_ring + rxq->rxrearm_start); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available + */ + if (!(rxdp->wb.status_error0 & + rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S))) + return 0; + + /* constants used in processing loop */ + const __m256i crc_adjust = + _mm256_set_epi16 + (/* first descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0, /* ignore pkt_type field */ + /* second descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0 /* ignore pkt_type field */ + ); + + /* 8 packets DD mask, LSB in each 32-bit value */ + const __m256i dd_check = _mm256_set1_epi32(1); + + /* 8 packets EOP mask, second-LSB in each 32-bit value */ + const __m256i eop_check = _mm256_slli_epi32(dd_check, + IAVF_RX_FLEX_DESC_STATUS0_EOF_S); + + /* mask to shuffle from desc. to mbuf (2 descriptors)*/ + const __m256i shuf_msk = + _mm256_set_epi8 + (/* first descriptor */ + 15, 14, + 13, 12, /* octet 12~15, 32 bits rss */ + 11, 10, /* octet 10~11, 16 bits vlan_macip */ + 5, 4, /* octet 4~5, 16 bits data_len */ + 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ + 5, 4, /* octet 4~5, 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF, /*pkt_type set as unknown */ + /* second descriptor */ + 15, 14, + 13, 12, /* octet 12~15, 32 bits rss */ + 11, 10, /* octet 10~11, 16 bits vlan_macip */ + 5, 4, /* octet 4~5, 16 bits data_len */ + 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ + 5, 4, /* octet 4~5, 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF /*pkt_type set as unknown */ + ); + /** + * compile-time check the above crc and shuffle layout is correct. + * NOTE: the first field (lowest address) is given last in set_epi + * calls above. + */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); + + /* Status/Error flag masks */ + /** + * mask everything except Checksum Reports, RSS indication + * and VLAN indication. + * bit6:4 for IP/L4 checksum errors. + * bit12 is for RSS indication. + * bit13 is for VLAN indication. + */ + const __m256i flags_mask = + _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13)); + /** + * data to be shuffled by the result of the flags mask shifted by 4 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + /* shift right 1 bit to make sure it not exceed 255 */ + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | + PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1, + /* second 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | + PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1); + const __m256i cksum_mask = + _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_EIP_CKSUM_BAD); + /** + * data to be shuffled by result of flag mask, shifted down 12. + * If RSS(bit12)/VLAN(bit13) are set, + * shuffle moves appropriate flags in place. + */ + const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, + PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, + PKT_RX_RSS_HASH, 0, + /* end up 128-bits */ + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, + PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, + PKT_RX_RSS_HASH, 0); + + uint16_t i, received; + + for (i = 0, received = 0; i < nb_pkts; + i += IAVF_DESCS_PER_LOOP_AVX, + rxdp += IAVF_DESCS_PER_LOOP_AVX) { + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ + _mm256_storeu_si256((void *)&rx_pkts[i], + _mm256_loadu_si256((void *)&sw_ring[i])); +#ifdef RTE_ARCH_X86_64 + _mm256_storeu_si256 + ((void *)&rx_pkts[i + 4], + _mm256_loadu_si256((void *)&sw_ring[i + 4])); +#endif + + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; + + const __m128i raw_desc7 = + _mm_load_si128((void *)(rxdp + 7)); + rte_compiler_barrier(); + const __m128i raw_desc6 = + _mm_load_si128((void *)(rxdp + 6)); + rte_compiler_barrier(); + const __m128i raw_desc5 = + _mm_load_si128((void *)(rxdp + 5)); + rte_compiler_barrier(); + const __m128i raw_desc4 = + _mm_load_si128((void *)(rxdp + 4)); + rte_compiler_barrier(); + const __m128i raw_desc3 = + _mm_load_si128((void *)(rxdp + 3)); + rte_compiler_barrier(); + const __m128i raw_desc2 = + _mm_load_si128((void *)(rxdp + 2)); + rte_compiler_barrier(); + const __m128i raw_desc1 = + _mm_load_si128((void *)(rxdp + 1)); + rte_compiler_barrier(); + const __m128i raw_desc0 = + _mm_load_si128((void *)(rxdp + 0)); + + raw_desc6_7 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc6), + raw_desc7, 1); + raw_desc4_5 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc4), + raw_desc5, 1); + raw_desc2_3 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc2), + raw_desc3, 1); + raw_desc0_1 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc0), + raw_desc1, 1); + + if (split_packet) { + int j; + + for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++) + rte_mbuf_prefetch_part2(rx_pkts[i + j]); + } + + /** + * convert descriptors 4-7 into mbufs, re-arrange fields. + * Then write into the mbuf. + */ + __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk); + __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk); + + mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust); + mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust); + /** + * to get packet types, ptype is located in bit16-25 + * of each 128bits + */ + const __m256i ptype_mask = + _mm256_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M); + const __m256i ptypes6_7 = + _mm256_and_si256(raw_desc6_7, ptype_mask); + const __m256i ptypes4_5 = + _mm256_and_si256(raw_desc4_5, ptype_mask); + const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9); + const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1); + const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9); + const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1); + + mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4); + mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0); + mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4); + mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0); + /* merge the status bits into one register */ + const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7, + raw_desc4_5); + + /** + * convert descriptors 0-3 into mbufs, re-arrange fields. + * Then write into the mbuf. + */ + __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk); + __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk); + + mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust); + mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust); + /** + * to get packet types, ptype is located in bit16-25 + * of each 128bits + */ + const __m256i ptypes2_3 = + _mm256_and_si256(raw_desc2_3, ptype_mask); + const __m256i ptypes0_1 = + _mm256_and_si256(raw_desc0_1, ptype_mask); + const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9); + const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1); + const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9); + const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1); + + mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4); + mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0); + mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4); + mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0); + /* merge the status bits into one register */ + const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3, + raw_desc0_1); + + /** + * take the two sets of status bits and merge to one + * After merge, the packets status flags are in the + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + */ + __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, + status0_3); + + /* now do flag manipulation */ + + /* get only flag/error bits we want */ + const __m256i flag_bits = + _mm256_and_si256(status0_7, flags_mask); + /** + * l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 4)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); + /* set rss and vlan flags */ + const __m256i rss_vlan_flag_bits = + _mm256_srli_epi32(flag_bits, 12); + const __m256i rss_vlan_flags = + _mm256_shuffle_epi8(rss_vlan_flags_shuf, + rss_vlan_flag_bits); + + /* merge flags */ + const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, + rss_vlan_flags); + /** + * At this point, we have the 8 sets of flags in the low 16-bits + * of each 32-bit value in vlan0. + * We want to extract these, and merge them with the mbuf init + * data so we can do a single write to the mbuf to set the flags + * and all the other initialization fields. Extracting the + * appropriate flags means that we have to do a shift and blend + * for each mbuf before we do the write. However, we can also + * add in the previously computed rx_descriptor fields to + * make a single 256-bit write per mbuf + */ + /* check the structure matches expectations */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != + offsetof(struct rte_mbuf, rearm_data) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != + RTE_ALIGN(offsetof(struct rte_mbuf, + rearm_data), + 16)); + /* build up data and do writes */ + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, + rearm6, rearm7; + rearm6 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 8), + 0x04); + rearm4 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 4), + 0x04); + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(mbuf_flags, 4), + 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + /* write to mbuf */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, + rearm6); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, + rearm4); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, + rearm2); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, + rearm0); + + /* repeat for the odd mbufs */ + const __m256i odd_flags = + _mm256_castsi128_si256 + (_mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 8), + 0x04); + rearm5 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 4), + 0x04); + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(odd_flags, 4), + 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + /* again write to mbufs */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, + rearm7); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, + rearm5); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, + rearm3); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, + rearm1); + + /* extract and record EOP bit */ + if (split_packet) { + const __m128i eop_mask = + _mm_set1_epi16(1 << + IAVF_RX_FLEX_DESC_STATUS0_EOF_S); + const __m256i eop_bits256 = _mm256_and_si256(status0_7, + eop_check); + /* pack status bits into a single 128-bit register */ + const __m128i eop_bits = + _mm_packus_epi32 + (_mm256_castsi256_si128(eop_bits256), + _mm256_extractf128_si256(eop_bits256, + 1)); + /** + * flip bits, and mask out the EOP bit, which is now + * a split-packet bit i.e. !EOP, rather than EOP one. + */ + __m128i split_bits = _mm_andnot_si128(eop_bits, + eop_mask); + /** + * eop bits are out of order, so we need to shuffle them + * back into order again. In doing so, only use low 8 + * bits, which acts like another pack instruction + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 + * [Since we use epi8, the 16-bit positions are + * multiplied by 2 in the eop_shuffle value.] + */ + __m128i eop_shuffle = + _mm_set_epi8(/* zero hi 64b */ + 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, + /* move values to lo 64b */ + 8, 0, 10, 2, + 12, 4, 14, 6); + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); + *(uint64_t *)split_packet = + _mm_cvtsi128_si64(split_bits); + split_packet += IAVF_DESCS_PER_LOOP_AVX; + } + + /* perform dd_check */ + status0_7 = _mm256_and_si256(status0_7, dd_check); + status0_7 = _mm256_packs_epi32(status0_7, + _mm256_setzero_si256()); + + uint64_t burst = __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_extracti128_si256 + (status0_7, 1))); + burst += __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_castsi256_si128(status0_7))); + received += burst; + if (burst != IAVF_DESCS_PER_LOOP_AVX) + break; + } + + /* update tail pointers */ + rxq->rx_tail += received; + rxq->rx_tail &= (rxq->nb_rx_desc - 1); + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ + rxq->rx_tail--; + received--; + } + rxq->rxrearm_nb += received; + return received; +} + /** * Notice: * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet @@ -559,6 +1020,18 @@ iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); } +/** + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +uint16_t +iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rx_queue, rx_pkts, + nb_pkts, NULL); +} + /** * vPMD receive routine that reassembles single burst of 32 scattered packets * Notice: @@ -624,6 +1097,75 @@ iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, rx_pkts + retval, nb_pkts); } +/** + * vPMD receive routine that reassembles single burst of + * 32 scattered packets for flex RxD + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +static uint16_t +iavf_recv_scattered_burst_vec_avx2_flex_rxd(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct iavf_rx_queue *rxq = rx_queue; + uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; + + /* get some new buffers */ + uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rxq, + rx_pkts, nb_pkts, split_flags); + if (nb_bufs == 0) + return 0; + + /* happy day case, full burst + no packets to be joined */ + const uint64_t *split_fl64 = (uint64_t *)split_flags; + + if (!rxq->pkt_first_seg && + split_fl64[0] == 0 && split_fl64[1] == 0 && + split_fl64[2] == 0 && split_fl64[3] == 0) + return nb_bufs; + + /* reassemble any packets that need reassembly*/ + unsigned int i = 0; + + if (!rxq->pkt_first_seg) { + /* find the first split flag, and only reassemble then*/ + while (i < nb_bufs && !split_flags[i]) + i++; + if (i == nb_bufs) + return nb_bufs; + rxq->pkt_first_seg = rx_pkts[i]; + } + return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, + &split_flags[i]); +} + +/** + * vPMD receive routine that reassembles scattered packets for flex RxD. + * Main receive routine that can handle arbitrary burst sizes + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +uint16_t +iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + uint16_t retval = 0; + + while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { + uint16_t burst = + iavf_recv_scattered_burst_vec_avx2_flex_rxd + (rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST); + retval += burst; + nb_pkts -= burst; + if (burst < IAVF_VPMD_RX_MAX_BURST) + return retval; + } + return retval + iavf_recv_scattered_burst_vec_avx2_flex_rxd(rx_queue, + rx_pkts + retval, nb_pkts); +} + static inline void iavf_vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) -- 2.17.1