DPDK patches and discussions
 help / color / mirror / Atom feed
From: Shaiq Wani <shaiq.wani@intel.com>
To: dev@dpdk.org, bruce.richardson@intel.com, aman.deep.singh@intel.com
Subject: [PATCH 1/2] common/idpf: enable AVX2 for single queue Rx
Date: Wed,  8 Jan 2025 17:47:56 +0530	[thread overview]
Message-ID: <20250108121757.170494-2-shaiq.wani@intel.com> (raw)
In-Reply-To: <20250108121757.170494-1-shaiq.wani@intel.com>

In case some CPUs don't support AVX512. Enable AVX2 for them to
get better per-core performance.

Signed-off-by: Shaiq Wani <shaiq.wani@intel.com>
---
 drivers/common/idpf/idpf_common_device.h    |   1 +
 drivers/common/idpf/idpf_common_rxtx.h      |   4 +
 drivers/common/idpf/idpf_common_rxtx_avx2.c | 590 ++++++++++++++++++++
 drivers/common/idpf/meson.build             |  15 +
 drivers/common/idpf/version.map             |   1 +
 drivers/net/idpf/idpf_rxtx.c                |  12 +
 6 files changed, 623 insertions(+)
 create mode 100644 drivers/common/idpf/idpf_common_rxtx_avx2.c

diff --git a/drivers/common/idpf/idpf_common_device.h b/drivers/common/idpf/idpf_common_device.h
index bfa927a5ff..734be1c88a 100644
--- a/drivers/common/idpf/idpf_common_device.h
+++ b/drivers/common/idpf/idpf_common_device.h
@@ -123,6 +123,7 @@ struct idpf_vport {
 
 	bool rx_vec_allowed;
 	bool tx_vec_allowed;
+	bool rx_use_avx2;
 	bool rx_use_avx512;
 	bool tx_use_avx512;
 
diff --git a/drivers/common/idpf/idpf_common_rxtx.h b/drivers/common/idpf/idpf_common_rxtx.h
index eeeeed12e2..f50cf5ef46 100644
--- a/drivers/common/idpf/idpf_common_rxtx.h
+++ b/drivers/common/idpf/idpf_common_rxtx.h
@@ -302,5 +302,9 @@ uint16_t idpf_dp_splitq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pk
 __rte_internal
 uint16_t idpf_dp_singleq_recv_scatter_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
 			  uint16_t nb_pkts);
+__rte_internal
+uint16_t idpf_dp_singleq_recv_pkts_avx2(void *rx_queue,
+					struct rte_mbuf **rx_pkts,
+					uint16_t nb_pkts);
 
 #endif /* _IDPF_COMMON_RXTX_H_ */
diff --git a/drivers/common/idpf/idpf_common_rxtx_avx2.c b/drivers/common/idpf/idpf_common_rxtx_avx2.c
new file mode 100644
index 0000000000..a05b26c68a
--- /dev/null
+++ b/drivers/common/idpf/idpf_common_rxtx_avx2.c
@@ -0,0 +1,590 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Intel Corporation
+ */
+
+#include <rte_vect.h>
+
+#include "idpf_common_rxtx.h"
+#include "idpf_common_device.h"
+
+#ifndef __INTEL_COMPILER
+#pragma GCC diagnostic ignored "-Wcast-qual"
+#endif
+
+static __rte_always_inline void
+idpf_singleq_rx_rearm(struct idpf_rx_queue *rxq)
+{
+	int i;
+	uint16_t rx_id;
+	volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
+	struct rte_mbuf **rxep = &rxq->sw_ring[rxq->rxrearm_start];
+
+	rxdp += rxq->rxrearm_start;
+
+	/* Pull 'n' more MBUFs into the software ring */
+	if (rte_mempool_get_bulk(rxq->mp,
+				 (void *)rxep,
+				 IDPF_RXQ_REARM_THRESH) < 0) {
+		if (rxq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >=
+		    rxq->nb_rx_desc) {
+			__m128i dma_addr0;
+
+			dma_addr0 = _mm_setzero_si128();
+			for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) {
+				rxep[i] = &rxq->fake_mbuf;
+				_mm_store_si128((__m128i *)&rxdp[i].read,
+						dma_addr0);
+			}
+		}
+		rte_atomic_fetch_add_explicit(&rxq->rx_stats.mbuf_alloc_failed,
+				   IDPF_RXQ_REARM_THRESH, rte_memory_order_relaxed);
+
+		return;
+	}
+
+	struct rte_mbuf *mb0, *mb1;
+	__m128i dma_addr0, dma_addr1;
+	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
+			RTE_PKTMBUF_HEADROOM);
+	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
+	for (i = 0; i < IDPF_RXQ_REARM_THRESH; i += 2, rxep += 2) {
+		__m128i vaddr0, vaddr1;
+
+		mb0 = rxep[0];
+		mb1 = rxep[1];
+
+		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
+		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
+				offsetof(struct rte_mbuf, buf_addr) + 8);
+		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
+		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
+
+		/* convert pa to dma_addr hdr/data */
+		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
+		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
+
+		/* add headroom to pa values */
+		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
+		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
+
+		/* flush desc with pa dma_addr */
+		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
+		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
+	}
+
+	rxq->rxrearm_start += IDPF_RXQ_REARM_THRESH;
+	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
+		rxq->rxrearm_start = 0;
+
+	rxq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH;
+
+	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
+			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
+
+	/* Update the tail pointer on the NIC */
+	IDPF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+}
+
+static inline uint16_t
+_idpf_singleq_recv_raw_pkts_vec_avx2(struct idpf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
+				     uint16_t nb_pkts, uint8_t *split_packet)
+{
+#define IDPF_DESCS_PER_LOOP_AVX 8
+
+	const uint32_t *ptype_tbl = rxq->adapter->ptype_tbl;
+	const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
+			0, rxq->mbuf_initializer);
+	struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
+	volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
+	const int avx_aligned = ((rxq->rx_tail & 1) == 0);
+
+	rxdp += rxq->rx_tail;
+
+	rte_prefetch0(rxdp);
+
+	/* nb_pkts has to be floor-aligned to IDPF_DESCS_PER_LOOP_AVX */
+	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IDPF_DESCS_PER_LOOP_AVX);
+
+	/* See if we need to rearm the RX queue - gives the prefetch a bit
+	 * of time to act
+	 */
+	if (rxq->rxrearm_nb > IDPF_RXQ_REARM_THRESH)
+		idpf_singleq_rx_rearm(rxq);
+
+	/* Before we start moving massive data around, check to see if
+	 * there is actually a packet available
+	 */
+	if (!(rxdp->flex_nic_wb.status_error0 &
+			rte_cpu_to_le_32(1 << VIRTCHNL2_RX_FLEX_DESC_STATUS0_DD_S)))
+		return 0;
+
+	/* 8 packets DD mask, LSB in each 32-bit value */
+	const __m256i dd_check = _mm256_set1_epi32(1);
+
+	/* 8 packets EOP mask, second-LSB in each 32-bit value */
+	const __m256i eop_check = _mm256_slli_epi32(dd_check,
+			VIRTCHNL2_RX_FLEX_DESC_STATUS0_EOF_S);
+
+	/* mask to shuffle from desc. to mbuf (2 descriptors)*/
+	const __m256i shuf_msk =
+		_mm256_set_epi8
+			(/* first descriptor */
+			 0xFF, 0xFF,
+			 0xFF, 0xFF,	/* rss hash parsed separately */
+			 11, 10,	/* octet 10~11, 16 bits vlan_macip */
+			 5, 4,		/* octet 4~5, 16 bits data_len */
+			 0xFF, 0xFF,	/* skip hi 16 bits pkt_len, zero out */
+			 5, 4,		/* octet 4~5, 16 bits pkt_len */
+			 0xFF, 0xFF,	/* pkt_type set as unknown */
+			 0xFF, 0xFF,	/*pkt_type set as unknown */
+			 /* second descriptor */
+			 0xFF, 0xFF,
+			 0xFF, 0xFF,	/* rss hash parsed separately */
+			 11, 10,	/* octet 10~11, 16 bits vlan_macip */
+			 5, 4,		/* octet 4~5, 16 bits data_len */
+			 0xFF, 0xFF,	/* skip hi 16 bits pkt_len, zero out */
+			 5, 4,		/* octet 4~5, 16 bits pkt_len */
+			 0xFF, 0xFF,	/* pkt_type set as unknown */
+			 0xFF, 0xFF	/*pkt_type set as unknown */
+			);
+	/**
+	 * compile-time check the above crc and shuffle layout is correct.
+	 * NOTE: the first field (lowest address) is given last in set_epi
+	 * calls above.
+	 */
+	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+	/* Status/Error flag masks */
+	/**
+	 * mask everything except Checksum Reports, RSS indication
+	 * and VLAN indication.
+	 * bit6:4 for IP/L4 checksum errors.
+	 * bit12 is for RSS indication.
+	 * bit13 is for VLAN indication.
+	 */
+	const __m256i flags_mask =
+		 _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
+	/**
+	 * data to be shuffled by the result of the flags mask shifted by 4
+	 * bits.  This gives use the l3_l4 flags.
+	 */
+	const __m256i l3_l4_flags_shuf =
+		_mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 |
+		 RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+		  RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		/**
+		 * second 128-bits
+		 * shift right 20 bits to use the low two bits to indicate
+		 * outer checksum status
+		 * shift right 1 bit to make sure it not exceed 255
+		 */
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD  |
+		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+		 RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD |
+		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+		 RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
+		(RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD |
+		 RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1);
+	const __m256i cksum_mask =
+		 _mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK |
+				   RTE_MBUF_F_RX_L4_CKSUM_MASK |
+				   RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
+				   RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK);
+	/**
+	 * data to be shuffled by result of flag mask, shifted down 12.
+	 * If RSS(bit12)/VLAN(bit13) are set,
+	 * shuffle moves appropriate flags in place.
+	 */
+	const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
+			0, 0, 0, 0,
+			0, 0, 0, 0,
+			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+			RTE_MBUF_F_RX_RSS_HASH, 0,
+			/* end up 128-bits */
+			0, 0, 0, 0,
+			0, 0, 0, 0,
+			0, 0, 0, 0,
+			RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+			RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED,
+			RTE_MBUF_F_RX_RSS_HASH, 0);
+
+	RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
+
+	uint16_t i, received;
+
+	for (i = 0, received = 0; i < nb_pkts;
+	     i += IDPF_DESCS_PER_LOOP_AVX,
+	     rxdp += IDPF_DESCS_PER_LOOP_AVX) {
+		/* step 1, copy over 8 mbuf pointers to rx_pkts array */
+		_mm256_storeu_si256((void *)&rx_pkts[i],
+				    _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+		_mm256_storeu_si256
+			((void *)&rx_pkts[i + 4],
+			 _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+		__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
+
+		const __m128i raw_desc7 =
+			_mm_load_si128((void *)(rxdp + 7));
+		rte_compiler_barrier();
+		const __m128i raw_desc6 =
+			_mm_load_si128((void *)(rxdp + 6));
+		rte_compiler_barrier();
+		const __m128i raw_desc5 =
+			_mm_load_si128((void *)(rxdp + 5));
+		rte_compiler_barrier();
+		const __m128i raw_desc4 =
+			_mm_load_si128((void *)(rxdp + 4));
+		rte_compiler_barrier();
+		const __m128i raw_desc3 =
+			_mm_load_si128((void *)(rxdp + 3));
+		rte_compiler_barrier();
+		const __m128i raw_desc2 =
+			_mm_load_si128((void *)(rxdp + 2));
+		rte_compiler_barrier();
+		const __m128i raw_desc1 =
+			_mm_load_si128((void *)(rxdp + 1));
+		rte_compiler_barrier();
+		const __m128i raw_desc0 =
+			_mm_load_si128((void *)(rxdp + 0));
+
+		raw_desc6_7 =
+			_mm256_inserti128_si256
+				(_mm256_castsi128_si256(raw_desc6),
+				 raw_desc7, 1);
+		raw_desc4_5 =
+			_mm256_inserti128_si256
+				(_mm256_castsi128_si256(raw_desc4),
+				 raw_desc5, 1);
+		raw_desc2_3 =
+			_mm256_inserti128_si256
+				(_mm256_castsi128_si256(raw_desc2),
+				 raw_desc3, 1);
+		raw_desc0_1 =
+			_mm256_inserti128_si256
+				(_mm256_castsi128_si256(raw_desc0),
+				 raw_desc1, 1);
+
+		if (split_packet) {
+			int j;
+
+			for (j = 0; j < IDPF_DESCS_PER_LOOP_AVX; j++)
+				rte_mbuf_prefetch_part2(rx_pkts[i + j]);
+		}
+
+		/**
+		 * convert descriptors 4-7 into mbufs, re-arrange fields.
+		 * Then write into the mbuf.
+		 */
+		__m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
+		__m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
+
+		/**
+		 * to get packet types, ptype is located in bit16-25
+		 * of each 128bits
+		 */
+		const __m256i ptype_mask =
+			_mm256_set1_epi16(VIRTCHNL2_RX_FLEX_DESC_PTYPE_M);
+		const __m256i ptypes6_7 =
+			_mm256_and_si256(raw_desc6_7, ptype_mask);
+		const __m256i ptypes4_5 =
+			_mm256_and_si256(raw_desc4_5, ptype_mask);
+		const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
+		const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
+		const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
+		const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
+
+		mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
+		mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
+		mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
+		mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
+		/* merge the status bits into one register */
+		const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
+				raw_desc4_5);
+
+		/**
+		 * convert descriptors 0-3 into mbufs, re-arrange fields.
+		 * Then write into the mbuf.
+		 */
+		__m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
+		__m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
+
+		/**
+		 * to get packet types, ptype is located in bit16-25
+		 * of each 128bits
+		 */
+		const __m256i ptypes2_3 =
+			_mm256_and_si256(raw_desc2_3, ptype_mask);
+		const __m256i ptypes0_1 =
+			_mm256_and_si256(raw_desc0_1, ptype_mask);
+		const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
+		const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
+		const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
+		const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
+
+		mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
+		mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
+		mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
+		mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
+		/* merge the status bits into one register */
+		const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
+								raw_desc0_1);
+
+		/**
+		 * take the two sets of status bits and merge to one
+		 * After merge, the packets status flags are in the
+		 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+		 */
+		__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
+							  status0_3);
+
+		/* now do flag manipulation */
+
+		/* get only flag/error bits we want */
+		const __m256i flag_bits =
+			_mm256_and_si256(status0_7, flags_mask);
+		/**
+		 * l3_l4_error flags, shuffle, then shift to correct adjustment
+		 * of flags in flags_shuf, and finally mask out extra bits
+		 */
+		__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
+				_mm256_srli_epi32(flag_bits, 4));
+		l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
+
+		__m256i l4_outer_mask = _mm256_set1_epi32(0x6);
+		__m256i l4_outer_flags =
+				_mm256_and_si256(l3_l4_flags, l4_outer_mask);
+		l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
+
+		__m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
+		l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
+		l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
+		l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
+		/* set rss and vlan flags */
+		const __m256i rss_vlan_flag_bits =
+			_mm256_srli_epi32(flag_bits, 12);
+		const __m256i rss_vlan_flags =
+			_mm256_shuffle_epi8(rss_vlan_flags_shuf,
+					    rss_vlan_flag_bits);
+
+		/* merge flags */
+		__m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
+				rss_vlan_flags);
+
+		/**
+		 * At this point, we have the 8 sets of flags in the low 16-bits
+		 * of each 32-bit value in vlan0.
+		 * We want to extract these, and merge them with the mbuf init
+		 * data so we can do a single write to the mbuf to set the flags
+		 * and all the other initialization fields. Extracting the
+		 * appropriate flags means that we have to do a shift and blend
+		 * for each mbuf before we do the write. However, we can also
+		 * add in the previously computed rx_descriptor fields to
+		 * make a single 256-bit write per mbuf
+		 */
+		/* check the structure matches expectations */
+		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+				 offsetof(struct rte_mbuf, rearm_data) + 8);
+		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+				 RTE_ALIGN(offsetof(struct rte_mbuf,
+						    rearm_data),
+					   16));
+		/* build up data and do writes */
+		__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+			rearm6, rearm7;
+		rearm6 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_slli_si256(mbuf_flags, 8),
+					    0x04);
+		rearm4 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_slli_si256(mbuf_flags, 4),
+					    0x04);
+		rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
+		rearm0 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_srli_si256(mbuf_flags, 4),
+					    0x04);
+		/* permute to add in the rx_descriptor e.g. rss fields */
+		rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
+		rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
+		rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
+		rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
+		/* write to mbuf */
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
+				    rearm6);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
+				    rearm4);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
+				    rearm2);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
+				    rearm0);
+
+		/* repeat for the odd mbufs */
+		const __m256i odd_flags =
+			_mm256_castsi128_si256
+				(_mm256_extracti128_si256(mbuf_flags, 1));
+		rearm7 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_slli_si256(odd_flags, 8),
+					    0x04);
+		rearm5 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_slli_si256(odd_flags, 4),
+					    0x04);
+		rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
+		rearm1 = _mm256_blend_epi32(mbuf_init,
+					    _mm256_srli_si256(odd_flags, 4),
+					    0x04);
+		/* since odd mbufs are already in hi 128-bits use blend */
+		rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
+		rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
+		rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
+		rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
+		/* again write to mbufs */
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
+				    rearm7);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
+				    rearm5);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
+				    rearm3);
+		_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
+				    rearm1);
+
+		/* extract and record EOP bit */
+		if (split_packet) {
+			const __m128i eop_mask =
+				_mm_set1_epi16(1 << VIRTCHNL2_RX_FLEX_DESC_STATUS0_EOF_S);
+			const __m256i eop_bits256 = _mm256_and_si256(status0_7,
+								     eop_check);
+			/* pack status bits into a single 128-bit register */
+			const __m128i eop_bits =
+				_mm_packus_epi32
+					(_mm256_castsi256_si128(eop_bits256),
+					 _mm256_extractf128_si256(eop_bits256,
+								  1));
+			/**
+			 * flip bits, and mask out the EOP bit, which is now
+			 * a split-packet bit i.e. !EOP, rather than EOP one.
+			 */
+			__m128i split_bits = _mm_andnot_si128(eop_bits,
+					eop_mask);
+			/**
+			 * eop bits are out of order, so we need to shuffle them
+			 * back into order again. In doing so, only use low 8
+			 * bits, which acts like another pack instruction
+			 * The original order is (hi->lo): 1,3,5,7,0,2,4,6
+			 * [Since we use epi8, the 16-bit positions are
+			 * multiplied by 2 in the eop_shuffle value.]
+			 */
+			__m128i eop_shuffle =
+				_mm_set_epi8(/* zero hi 64b */
+					     0xFF, 0xFF, 0xFF, 0xFF,
+					     0xFF, 0xFF, 0xFF, 0xFF,
+					     /* move values to lo 64b */
+					     8, 0, 10, 2,
+					     12, 4, 14, 6);
+			split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
+			*(uint64_t *)split_packet =
+				_mm_cvtsi128_si64(split_bits);
+			split_packet += IDPF_DESCS_PER_LOOP_AVX;
+		}
+
+		/* perform dd_check */
+		status0_7 = _mm256_and_si256(status0_7, dd_check);
+		status0_7 = _mm256_packs_epi32(status0_7,
+					       _mm256_setzero_si256());
+
+		uint64_t burst = rte_popcount64
+					(_mm_cvtsi128_si64
+						(_mm256_extracti128_si256
+							(status0_7, 1)));
+		burst += rte_popcount64
+				(_mm_cvtsi128_si64
+					(_mm256_castsi256_si128(status0_7)));
+		received += burst;
+		if (burst != IDPF_DESCS_PER_LOOP_AVX)
+			break;
+	}
+
+	/* update tail pointers */
+	rxq->rx_tail += received;
+	rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+	if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
+		rxq->rx_tail--;
+		received--;
+	}
+	rxq->rxrearm_nb += received;
+	return received;
+}
+
+/**
+ * Notice:
+ * - nb_pkts < IDPF_DESCS_PER_LOOP, just return no packet
+ */
+uint16_t
+idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
+			       uint16_t nb_pkts)
+{
+	return _idpf_singleq_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
+}
diff --git a/drivers/common/idpf/meson.build b/drivers/common/idpf/meson.build
index 46fd45c03b..4caa06a9b7 100644
--- a/drivers/common/idpf/meson.build
+++ b/drivers/common/idpf/meson.build
@@ -16,6 +16,21 @@ sources = files(
 )
 
 if arch_subdir == 'x86'
+    # compile AVX2 version if either:
+    # a. we have AVX supported in minimum instruction set baseline
+    # b. it's not minimum instruction set, but supported by compiler
+    if cc.get_define('__AVX2__', args: machine_args) != ''
+        cflags += ['-DCC_AVX2_SUPPORT']
+        sources += files('idpf_common_rxtx_avx2.c')
+    elif cc.has_argument('-mavx2')
+       cflags += ['-DCC_AVX2_SUPPORT']
+        idpf_avx2_lib = static_library('idpf_avx2_lib',
+                'idpf_common_rxtx_avx2.c',
+               dependencies: [static_rte_ethdev, static_rte_kvargs, static_rte_hash],
+                include_directories: includes,
+                c_args: [cflags, '-mavx2'])
+       objs += idpf_avx2_lib.extract_objects('idpf_common_rxtx_avx2.c')
+    endif
     if cc_has_avx512
         cflags += ['-DCC_AVX512_SUPPORT']
         avx512_args = cflags + cc_avx512_flags
diff --git a/drivers/common/idpf/version.map b/drivers/common/idpf/version.map
index 0729f6b912..4510aae6b3 100644
--- a/drivers/common/idpf/version.map
+++ b/drivers/common/idpf/version.map
@@ -14,6 +14,7 @@ INTERNAL {
 	idpf_dp_splitq_recv_pkts_avx512;
 	idpf_dp_splitq_xmit_pkts;
 	idpf_dp_splitq_xmit_pkts_avx512;
+	idpf_dp_singleq_recv_pkts_avx2;
 
 	idpf_qc_rx_thresh_check;
 	idpf_qc_rx_queue_release;
diff --git a/drivers/net/idpf/idpf_rxtx.c b/drivers/net/idpf/idpf_rxtx.c
index 858bbefe3b..80c6c325e8 100644
--- a/drivers/net/idpf/idpf_rxtx.c
+++ b/drivers/net/idpf/idpf_rxtx.c
@@ -776,6 +776,11 @@ idpf_set_rx_function(struct rte_eth_dev *dev)
 	    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
 		vport->rx_vec_allowed = true;
 
+		if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+		     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
+		    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
+			vport->rx_use_avx2 = true;
+
 		if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
 #ifdef CC_AVX512_SUPPORT
 			if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
@@ -827,6 +832,13 @@ idpf_set_rx_function(struct rte_eth_dev *dev)
 				return;
 			}
 #endif /* CC_AVX512_SUPPORT */
+			if (vport->rx_use_avx2) {
+				PMD_DRV_LOG(NOTICE,
+					    "Using Single AVX2 Vector Rx (port %d).",
+					    dev->data->port_id);
+				dev->rx_pkt_burst = idpf_dp_singleq_recv_pkts_avx2;
+				return;
+			}
 		}
 
 		if (dev->data->scattered_rx) {
-- 
2.34.1


  reply	other threads:[~2025-01-08 12:16 UTC|newest]

Thread overview: 4+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2025-01-08 12:17 [PATCH 0/2] enable AVX2 for IDPF single queue Shaiq Wani
2025-01-08 12:17 ` Shaiq Wani [this message]
2025-01-08 12:17 ` [PATCH 2/2] common/idpf: enable AVX2 for single queue Tx Shaiq Wani
  -- strict thread matches above, loose matches on Subject: below --
2023-12-07  6:35 [PATCH 0/2] enable AVX2 for IDPF single queue Wenzhuo Lu
2023-12-07  6:35 ` [PATCH 1/2] common/idpf: enable AVX2 for single queue Rx Wenzhuo Lu

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20250108121757.170494-2-shaiq.wani@intel.com \
    --to=shaiq.wani@intel.com \
    --cc=aman.deep.singh@intel.com \
    --cc=bruce.richardson@intel.com \
    --cc=dev@dpdk.org \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).