* [PATCH 0/2] enable AVX2 for IDPF single queue @ 2025-01-08 12:17 Shaiq Wani 2025-01-08 12:17 ` [PATCH 1/2] common/idpf: enable AVX2 for single queue Rx Shaiq Wani 2025-01-08 12:17 ` [PATCH 2/2] common/idpf: enable AVX2 for single queue Tx Shaiq Wani 0 siblings, 2 replies; 4+ messages in thread From: Shaiq Wani @ 2025-01-08 12:17 UTC (permalink / raw) To: dev, bruce.richardson, aman.deep.singh In case some CPUs don't support AVX512. Enable AVX2 for them to get better per-core performance. Shaiq Wani (2): common/idpf: enable AVX2 for single queue Rx common/idpf: enable AVX2 for single queue Tx doc/guides/rel_notes/release_25_03.rst | 3 + drivers/common/idpf/idpf_common_device.h | 2 + drivers/common/idpf/idpf_common_rxtx.h | 8 + drivers/common/idpf/idpf_common_rxtx_avx2.c | 815 ++++++++++++++++++++ drivers/common/idpf/meson.build | 15 + drivers/common/idpf/version.map | 2 + drivers/net/idpf/idpf_rxtx.c | 26 + 7 files changed, 871 insertions(+) create mode 100644 drivers/common/idpf/idpf_common_rxtx_avx2.c -- 2.34.1 ^ permalink raw reply [flat|nested] 4+ messages in thread
* [PATCH 1/2] common/idpf: enable AVX2 for single queue Rx 2025-01-08 12:17 [PATCH 0/2] enable AVX2 for IDPF single queue Shaiq Wani @ 2025-01-08 12:17 ` Shaiq Wani 2025-01-08 12:17 ` [PATCH 2/2] common/idpf: enable AVX2 for single queue Tx Shaiq Wani 1 sibling, 0 replies; 4+ messages in thread From: Shaiq Wani @ 2025-01-08 12:17 UTC (permalink / raw) To: dev, bruce.richardson, aman.deep.singh In case some CPUs don't support AVX512. Enable AVX2 for them to get better per-core performance. Signed-off-by: Shaiq Wani <shaiq.wani@intel.com> --- drivers/common/idpf/idpf_common_device.h | 1 + drivers/common/idpf/idpf_common_rxtx.h | 4 + drivers/common/idpf/idpf_common_rxtx_avx2.c | 590 ++++++++++++++++++++ drivers/common/idpf/meson.build | 15 + drivers/common/idpf/version.map | 1 + drivers/net/idpf/idpf_rxtx.c | 12 + 6 files changed, 623 insertions(+) create mode 100644 drivers/common/idpf/idpf_common_rxtx_avx2.c diff --git a/drivers/common/idpf/idpf_common_device.h b/drivers/common/idpf/idpf_common_device.h index bfa927a5ff..734be1c88a 100644 --- a/drivers/common/idpf/idpf_common_device.h +++ b/drivers/common/idpf/idpf_common_device.h @@ -123,6 +123,7 @@ struct idpf_vport { bool rx_vec_allowed; bool tx_vec_allowed; + bool rx_use_avx2; bool rx_use_avx512; bool tx_use_avx512; diff --git a/drivers/common/idpf/idpf_common_rxtx.h b/drivers/common/idpf/idpf_common_rxtx.h index eeeeed12e2..f50cf5ef46 100644 --- a/drivers/common/idpf/idpf_common_rxtx.h +++ b/drivers/common/idpf/idpf_common_rxtx.h @@ -302,5 +302,9 @@ uint16_t idpf_dp_splitq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pk __rte_internal uint16_t idpf_dp_singleq_recv_scatter_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); +__rte_internal +uint16_t idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); #endif /* _IDPF_COMMON_RXTX_H_ */ diff --git a/drivers/common/idpf/idpf_common_rxtx_avx2.c b/drivers/common/idpf/idpf_common_rxtx_avx2.c new file mode 100644 index 0000000000..a05b26c68a --- /dev/null +++ b/drivers/common/idpf/idpf_common_rxtx_avx2.c @@ -0,0 +1,590 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2023 Intel Corporation + */ + +#include <rte_vect.h> + +#include "idpf_common_rxtx.h" +#include "idpf_common_device.h" + +#ifndef __INTEL_COMPILER +#pragma GCC diagnostic ignored "-Wcast-qual" +#endif + +static __rte_always_inline void +idpf_singleq_rx_rearm(struct idpf_rx_queue *rxq) +{ + int i; + uint16_t rx_id; + volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring; + struct rte_mbuf **rxep = &rxq->sw_ring[rxq->rxrearm_start]; + + rxdp += rxq->rxrearm_start; + + /* Pull 'n' more MBUFs into the software ring */ + if (rte_mempool_get_bulk(rxq->mp, + (void *)rxep, + IDPF_RXQ_REARM_THRESH) < 0) { + if (rxq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >= + rxq->nb_rx_desc) { + __m128i dma_addr0; + + dma_addr0 = _mm_setzero_si128(); + for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) { + rxep[i] = &rxq->fake_mbuf; + _mm_store_si128((__m128i *)&rxdp[i].read, + dma_addr0); + } + } + rte_atomic_fetch_add_explicit(&rxq->rx_stats.mbuf_alloc_failed, + IDPF_RXQ_REARM_THRESH, rte_memory_order_relaxed); + + return; + } + + struct rte_mbuf *mb0, *mb1; + __m128i dma_addr0, dma_addr1; + __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, + RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 2 mbufs in one loop */ + for (i = 0; i < IDPF_RXQ_REARM_THRESH; i += 2, rxep += 2) { + __m128i vaddr0, vaddr1; + + mb0 = rxep[0]; + mb1 = rxep[1]; + + /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + + /* convert pa to dma_addr hdr/data */ + dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); + dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); + + /* add headroom to pa values */ + dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); + dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); + + /* flush desc with pa dma_addr */ + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); + } + + rxq->rxrearm_start += IDPF_RXQ_REARM_THRESH; + if (rxq->rxrearm_start >= rxq->nb_rx_desc) + rxq->rxrearm_start = 0; + + rxq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH; + + rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? + (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); + + /* Update the tail pointer on the NIC */ + IDPF_PCI_REG_WRITE(rxq->qrx_tail, rx_id); +} + +static inline uint16_t +_idpf_singleq_recv_raw_pkts_vec_avx2(struct idpf_rx_queue *rxq, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, uint8_t *split_packet) +{ +#define IDPF_DESCS_PER_LOOP_AVX 8 + + const uint32_t *ptype_tbl = rxq->adapter->ptype_tbl; + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, + 0, rxq->mbuf_initializer); + struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail]; + volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring; + const int avx_aligned = ((rxq->rx_tail & 1) == 0); + + rxdp += rxq->rx_tail; + + rte_prefetch0(rxdp); + + /* nb_pkts has to be floor-aligned to IDPF_DESCS_PER_LOOP_AVX */ + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IDPF_DESCS_PER_LOOP_AVX); + + /* See if we need to rearm the RX queue - gives the prefetch a bit + * of time to act + */ + if (rxq->rxrearm_nb > IDPF_RXQ_REARM_THRESH) + idpf_singleq_rx_rearm(rxq); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available + */ + if (!(rxdp->flex_nic_wb.status_error0 & + rte_cpu_to_le_32(1 << VIRTCHNL2_RX_FLEX_DESC_STATUS0_DD_S))) + return 0; + + /* 8 packets DD mask, LSB in each 32-bit value */ + const __m256i dd_check = _mm256_set1_epi32(1); + + /* 8 packets EOP mask, second-LSB in each 32-bit value */ + const __m256i eop_check = _mm256_slli_epi32(dd_check, + VIRTCHNL2_RX_FLEX_DESC_STATUS0_EOF_S); + + /* mask to shuffle from desc. to mbuf (2 descriptors)*/ + const __m256i shuf_msk = + _mm256_set_epi8 + (/* first descriptor */ + 0xFF, 0xFF, + 0xFF, 0xFF, /* rss hash parsed separately */ + 11, 10, /* octet 10~11, 16 bits vlan_macip */ + 5, 4, /* octet 4~5, 16 bits data_len */ + 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ + 5, 4, /* octet 4~5, 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF, /*pkt_type set as unknown */ + /* second descriptor */ + 0xFF, 0xFF, + 0xFF, 0xFF, /* rss hash parsed separately */ + 11, 10, /* octet 10~11, 16 bits vlan_macip */ + 5, 4, /* octet 4~5, 16 bits data_len */ + 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ + 5, 4, /* octet 4~5, 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF /*pkt_type set as unknown */ + ); + /** + * compile-time check the above crc and shuffle layout is correct. + * NOTE: the first field (lowest address) is given last in set_epi + * calls above. + */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); + + /* Status/Error flag masks */ + /** + * mask everything except Checksum Reports, RSS indication + * and VLAN indication. + * bit6:4 for IP/L4 checksum errors. + * bit12 is for RSS indication. + * bit13 is for VLAN indication. + */ + const __m256i flags_mask = + _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13)); + /** + * data to be shuffled by the result of the flags mask shifted by 4 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = + _mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | + RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + /** + * second 128-bits + * shift right 20 bits to use the low two bits to indicate + * outer checksum status + * shift right 1 bit to make sure it not exceed 255 + */ + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1); + const __m256i cksum_mask = + _mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK | + RTE_MBUF_F_RX_L4_CKSUM_MASK | + RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK); + /** + * data to be shuffled by result of flag mask, shifted down 12. + * If RSS(bit12)/VLAN(bit13) are set, + * shuffle moves appropriate flags in place. + */ + const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, + RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, + RTE_MBUF_F_RX_RSS_HASH, 0, + /* end up 128-bits */ + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, + RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, + RTE_MBUF_F_RX_RSS_HASH, 0); + + RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */ + + uint16_t i, received; + + for (i = 0, received = 0; i < nb_pkts; + i += IDPF_DESCS_PER_LOOP_AVX, + rxdp += IDPF_DESCS_PER_LOOP_AVX) { + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ + _mm256_storeu_si256((void *)&rx_pkts[i], + _mm256_loadu_si256((void *)&sw_ring[i])); +#ifdef RTE_ARCH_X86_64 + _mm256_storeu_si256 + ((void *)&rx_pkts[i + 4], + _mm256_loadu_si256((void *)&sw_ring[i + 4])); +#endif + + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; + + const __m128i raw_desc7 = + _mm_load_si128((void *)(rxdp + 7)); + rte_compiler_barrier(); + const __m128i raw_desc6 = + _mm_load_si128((void *)(rxdp + 6)); + rte_compiler_barrier(); + const __m128i raw_desc5 = + _mm_load_si128((void *)(rxdp + 5)); + rte_compiler_barrier(); + const __m128i raw_desc4 = + _mm_load_si128((void *)(rxdp + 4)); + rte_compiler_barrier(); + const __m128i raw_desc3 = + _mm_load_si128((void *)(rxdp + 3)); + rte_compiler_barrier(); + const __m128i raw_desc2 = + _mm_load_si128((void *)(rxdp + 2)); + rte_compiler_barrier(); + const __m128i raw_desc1 = + _mm_load_si128((void *)(rxdp + 1)); + rte_compiler_barrier(); + const __m128i raw_desc0 = + _mm_load_si128((void *)(rxdp + 0)); + + raw_desc6_7 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc6), + raw_desc7, 1); + raw_desc4_5 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc4), + raw_desc5, 1); + raw_desc2_3 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc2), + raw_desc3, 1); + raw_desc0_1 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc0), + raw_desc1, 1); + + if (split_packet) { + int j; + + for (j = 0; j < IDPF_DESCS_PER_LOOP_AVX; j++) + rte_mbuf_prefetch_part2(rx_pkts[i + j]); + } + + /** + * convert descriptors 4-7 into mbufs, re-arrange fields. + * Then write into the mbuf. + */ + __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk); + __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk); + + /** + * to get packet types, ptype is located in bit16-25 + * of each 128bits + */ + const __m256i ptype_mask = + _mm256_set1_epi16(VIRTCHNL2_RX_FLEX_DESC_PTYPE_M); + const __m256i ptypes6_7 = + _mm256_and_si256(raw_desc6_7, ptype_mask); + const __m256i ptypes4_5 = + _mm256_and_si256(raw_desc4_5, ptype_mask); + const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9); + const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1); + const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9); + const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1); + + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4); + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0); + /* merge the status bits into one register */ + const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7, + raw_desc4_5); + + /** + * convert descriptors 0-3 into mbufs, re-arrange fields. + * Then write into the mbuf. + */ + __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk); + __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk); + + /** + * to get packet types, ptype is located in bit16-25 + * of each 128bits + */ + const __m256i ptypes2_3 = + _mm256_and_si256(raw_desc2_3, ptype_mask); + const __m256i ptypes0_1 = + _mm256_and_si256(raw_desc0_1, ptype_mask); + const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9); + const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1); + const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9); + const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1); + + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4); + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0); + /* merge the status bits into one register */ + const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3, + raw_desc0_1); + + /** + * take the two sets of status bits and merge to one + * After merge, the packets status flags are in the + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + */ + __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, + status0_3); + + /* now do flag manipulation */ + + /* get only flag/error bits we want */ + const __m256i flag_bits = + _mm256_and_si256(status0_7, flags_mask); + /** + * l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 4)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + + __m256i l4_outer_mask = _mm256_set1_epi32(0x6); + __m256i l4_outer_flags = + _mm256_and_si256(l3_l4_flags, l4_outer_mask); + l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20); + + __m256i l3_l4_mask = _mm256_set1_epi32(~0x6); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask); + l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); + /* set rss and vlan flags */ + const __m256i rss_vlan_flag_bits = + _mm256_srli_epi32(flag_bits, 12); + const __m256i rss_vlan_flags = + _mm256_shuffle_epi8(rss_vlan_flags_shuf, + rss_vlan_flag_bits); + + /* merge flags */ + __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, + rss_vlan_flags); + + /** + * At this point, we have the 8 sets of flags in the low 16-bits + * of each 32-bit value in vlan0. + * We want to extract these, and merge them with the mbuf init + * data so we can do a single write to the mbuf to set the flags + * and all the other initialization fields. Extracting the + * appropriate flags means that we have to do a shift and blend + * for each mbuf before we do the write. However, we can also + * add in the previously computed rx_descriptor fields to + * make a single 256-bit write per mbuf + */ + /* check the structure matches expectations */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != + offsetof(struct rte_mbuf, rearm_data) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != + RTE_ALIGN(offsetof(struct rte_mbuf, + rearm_data), + 16)); + /* build up data and do writes */ + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, + rearm6, rearm7; + rearm6 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 8), + 0x04); + rearm4 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 4), + 0x04); + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(mbuf_flags, 4), + 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + /* write to mbuf */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, + rearm6); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, + rearm4); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, + rearm2); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, + rearm0); + + /* repeat for the odd mbufs */ + const __m256i odd_flags = + _mm256_castsi128_si256 + (_mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 8), + 0x04); + rearm5 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 4), + 0x04); + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(odd_flags, 4), + 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + /* again write to mbufs */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, + rearm7); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, + rearm5); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, + rearm3); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, + rearm1); + + /* extract and record EOP bit */ + if (split_packet) { + const __m128i eop_mask = + _mm_set1_epi16(1 << VIRTCHNL2_RX_FLEX_DESC_STATUS0_EOF_S); + const __m256i eop_bits256 = _mm256_and_si256(status0_7, + eop_check); + /* pack status bits into a single 128-bit register */ + const __m128i eop_bits = + _mm_packus_epi32 + (_mm256_castsi256_si128(eop_bits256), + _mm256_extractf128_si256(eop_bits256, + 1)); + /** + * flip bits, and mask out the EOP bit, which is now + * a split-packet bit i.e. !EOP, rather than EOP one. + */ + __m128i split_bits = _mm_andnot_si128(eop_bits, + eop_mask); + /** + * eop bits are out of order, so we need to shuffle them + * back into order again. In doing so, only use low 8 + * bits, which acts like another pack instruction + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 + * [Since we use epi8, the 16-bit positions are + * multiplied by 2 in the eop_shuffle value.] + */ + __m128i eop_shuffle = + _mm_set_epi8(/* zero hi 64b */ + 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, + /* move values to lo 64b */ + 8, 0, 10, 2, + 12, 4, 14, 6); + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); + *(uint64_t *)split_packet = + _mm_cvtsi128_si64(split_bits); + split_packet += IDPF_DESCS_PER_LOOP_AVX; + } + + /* perform dd_check */ + status0_7 = _mm256_and_si256(status0_7, dd_check); + status0_7 = _mm256_packs_epi32(status0_7, + _mm256_setzero_si256()); + + uint64_t burst = rte_popcount64 + (_mm_cvtsi128_si64 + (_mm256_extracti128_si256 + (status0_7, 1))); + burst += rte_popcount64 + (_mm_cvtsi128_si64 + (_mm256_castsi256_si128(status0_7))); + received += burst; + if (burst != IDPF_DESCS_PER_LOOP_AVX) + break; + } + + /* update tail pointers */ + rxq->rx_tail += received; + rxq->rx_tail &= (rxq->nb_rx_desc - 1); + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ + rxq->rx_tail--; + received--; + } + rxq->rxrearm_nb += received; + return received; +} + +/** + * Notice: + * - nb_pkts < IDPF_DESCS_PER_LOOP, just return no packet + */ +uint16_t +idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _idpf_singleq_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); +} diff --git a/drivers/common/idpf/meson.build b/drivers/common/idpf/meson.build index 46fd45c03b..4caa06a9b7 100644 --- a/drivers/common/idpf/meson.build +++ b/drivers/common/idpf/meson.build @@ -16,6 +16,21 @@ sources = files( ) if arch_subdir == 'x86' + # compile AVX2 version if either: + # a. we have AVX supported in minimum instruction set baseline + # b. it's not minimum instruction set, but supported by compiler + if cc.get_define('__AVX2__', args: machine_args) != '' + cflags += ['-DCC_AVX2_SUPPORT'] + sources += files('idpf_common_rxtx_avx2.c') + elif cc.has_argument('-mavx2') + cflags += ['-DCC_AVX2_SUPPORT'] + idpf_avx2_lib = static_library('idpf_avx2_lib', + 'idpf_common_rxtx_avx2.c', + dependencies: [static_rte_ethdev, static_rte_kvargs, static_rte_hash], + include_directories: includes, + c_args: [cflags, '-mavx2']) + objs += idpf_avx2_lib.extract_objects('idpf_common_rxtx_avx2.c') + endif if cc_has_avx512 cflags += ['-DCC_AVX512_SUPPORT'] avx512_args = cflags + cc_avx512_flags diff --git a/drivers/common/idpf/version.map b/drivers/common/idpf/version.map index 0729f6b912..4510aae6b3 100644 --- a/drivers/common/idpf/version.map +++ b/drivers/common/idpf/version.map @@ -14,6 +14,7 @@ INTERNAL { idpf_dp_splitq_recv_pkts_avx512; idpf_dp_splitq_xmit_pkts; idpf_dp_splitq_xmit_pkts_avx512; + idpf_dp_singleq_recv_pkts_avx2; idpf_qc_rx_thresh_check; idpf_qc_rx_queue_release; diff --git a/drivers/net/idpf/idpf_rxtx.c b/drivers/net/idpf/idpf_rxtx.c index 858bbefe3b..80c6c325e8 100644 --- a/drivers/net/idpf/idpf_rxtx.c +++ b/drivers/net/idpf/idpf_rxtx.c @@ -776,6 +776,11 @@ idpf_set_rx_function(struct rte_eth_dev *dev) rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { vport->rx_vec_allowed = true; + if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) && + rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) + vport->rx_use_avx2 = true; + if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512) #ifdef CC_AVX512_SUPPORT if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 && @@ -827,6 +832,13 @@ idpf_set_rx_function(struct rte_eth_dev *dev) return; } #endif /* CC_AVX512_SUPPORT */ + if (vport->rx_use_avx2) { + PMD_DRV_LOG(NOTICE, + "Using Single AVX2 Vector Rx (port %d).", + dev->data->port_id); + dev->rx_pkt_burst = idpf_dp_singleq_recv_pkts_avx2; + return; + } } if (dev->data->scattered_rx) { -- 2.34.1 ^ permalink raw reply [flat|nested] 4+ messages in thread
* [PATCH 2/2] common/idpf: enable AVX2 for single queue Tx 2025-01-08 12:17 [PATCH 0/2] enable AVX2 for IDPF single queue Shaiq Wani 2025-01-08 12:17 ` [PATCH 1/2] common/idpf: enable AVX2 for single queue Rx Shaiq Wani @ 2025-01-08 12:17 ` Shaiq Wani 1 sibling, 0 replies; 4+ messages in thread From: Shaiq Wani @ 2025-01-08 12:17 UTC (permalink / raw) To: dev, bruce.richardson, aman.deep.singh In case some CPUs don't support AVX512. Enable AVX2 for them to get better per-core performance. Signed-off-by: Shaiq Wani <shaiq.wani@intel.com> --- doc/guides/rel_notes/release_25_03.rst | 3 + drivers/common/idpf/idpf_common_device.h | 1 + drivers/common/idpf/idpf_common_rxtx.h | 4 + drivers/common/idpf/idpf_common_rxtx_avx2.c | 225 ++++++++++++++++++++ drivers/common/idpf/version.map | 1 + drivers/net/idpf/idpf_rxtx.c | 14 ++ 6 files changed, 248 insertions(+) diff --git a/doc/guides/rel_notes/release_25_03.rst b/doc/guides/rel_notes/release_25_03.rst index 426dfcd982..7ded85dac4 100644 --- a/doc/guides/rel_notes/release_25_03.rst +++ b/doc/guides/rel_notes/release_25_03.rst @@ -55,6 +55,9 @@ New Features Also, make sure to start the actual text at the margin. ======================================================= + * **Added support of vector instructions on IDPF.** + + Added support of AVX2 instructions in IDPF single queue RX and TX path. Removed Items ------------- diff --git a/drivers/common/idpf/idpf_common_device.h b/drivers/common/idpf/idpf_common_device.h index 734be1c88a..5f3e4a4fcf 100644 --- a/drivers/common/idpf/idpf_common_device.h +++ b/drivers/common/idpf/idpf_common_device.h @@ -124,6 +124,7 @@ struct idpf_vport { bool rx_vec_allowed; bool tx_vec_allowed; bool rx_use_avx2; + bool tx_use_avx2; bool rx_use_avx512; bool tx_use_avx512; diff --git a/drivers/common/idpf/idpf_common_rxtx.h b/drivers/common/idpf/idpf_common_rxtx.h index f50cf5ef46..e19e1878f3 100644 --- a/drivers/common/idpf/idpf_common_rxtx.h +++ b/drivers/common/idpf/idpf_common_rxtx.h @@ -306,5 +306,9 @@ __rte_internal uint16_t idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); +__rte_internal +uint16_t idpf_dp_singleq_xmit_pkts_avx2(void *tx_queue, + struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); #endif /* _IDPF_COMMON_RXTX_H_ */ diff --git a/drivers/common/idpf/idpf_common_rxtx_avx2.c b/drivers/common/idpf/idpf_common_rxtx_avx2.c index a05b26c68a..a4bc8e2bef 100644 --- a/drivers/common/idpf/idpf_common_rxtx_avx2.c +++ b/drivers/common/idpf/idpf_common_rxtx_avx2.c @@ -588,3 +588,228 @@ idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, { return _idpf_singleq_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); } + +static __rte_always_inline void +idpf_tx_backlog_entry(struct idpf_tx_entry *txep, + struct rte_mbuf **tx_pkts, uint16_t nb_pkts) +{ + int i; + + for (i = 0; i < (int)nb_pkts; ++i) + txep[i].mbuf = tx_pkts[i]; +} + +static __rte_always_inline int +idpf_singleq_tx_free_bufs_vec(struct idpf_tx_queue *txq) +{ + struct idpf_tx_entry *txep; + uint32_t n; + uint32_t i; + int nb_free = 0; + struct rte_mbuf *m, *free[txq->rs_thresh]; + + /* check DD bits on threshold descriptor */ + if ((txq->tx_ring[txq->next_dd].qw1 & + rte_cpu_to_le_64(IDPF_TXD_QW1_DTYPE_M)) != + rte_cpu_to_le_64(IDPF_TX_DESC_DTYPE_DESC_DONE)) + return 0; + + n = txq->rs_thresh; + + /* first buffer to free from S/W ring is at index + * next_dd - (rs_thresh-1) + */ + txep = &txq->sw_ring[txq->next_dd - (n - 1)]; + m = rte_pktmbuf_prefree_seg(txep[0].mbuf); + if (likely(m)) { + free[0] = m; + nb_free = 1; + for (i = 1; i < n; i++) { + m = rte_pktmbuf_prefree_seg(txep[i].mbuf); + if (likely(m)) { + if (likely(m->pool == free[0]->pool)) { + free[nb_free++] = m; + } else { + rte_mempool_put_bulk(free[0]->pool, + (void *)free, + nb_free); + free[0] = m; + nb_free = 1; + } + } + } + rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free); + } else { + for (i = 1; i < n; i++) { + m = rte_pktmbuf_prefree_seg(txep[i].mbuf); + if (m) + rte_mempool_put(m->pool, m); + } + } + + /* buffers were freed, update counters */ + txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh); + txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh); + if (txq->next_dd >= txq->nb_tx_desc) + txq->next_dd = (uint16_t)(txq->rs_thresh - 1); + + return txq->rs_thresh; +} + +static inline void +idpf_singleq_vtx1(volatile struct idpf_base_tx_desc *txdp, + struct rte_mbuf *pkt, uint64_t flags) +{ + uint64_t high_qw = + (IDPF_TX_DESC_DTYPE_DATA | + ((uint64_t)flags << IDPF_TXD_QW1_CMD_S) | + ((uint64_t)pkt->data_len << IDPF_TXD_QW1_TX_BUF_SZ_S)); + + __m128i descriptor = _mm_set_epi64x(high_qw, + pkt->buf_iova + pkt->data_off); + _mm_store_si128((__m128i *)txdp, descriptor); +} + +static inline void +idpf_singleq_vtx(volatile struct idpf_base_tx_desc *txdp, + struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) +{ + const uint64_t hi_qw_tmpl = (IDPF_TX_DESC_DTYPE_DATA | + ((uint64_t)flags << IDPF_TXD_QW1_CMD_S)); + + /* if unaligned on 32-bit boundary, do one to align */ + if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) { + idpf_singleq_vtx1(txdp, *pkt, flags); + nb_pkts--, txdp++, pkt++; + } + + /* do two at a time while possible, in bursts */ + for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) { + uint64_t hi_qw3 = + hi_qw_tmpl | + ((uint64_t)pkt[3]->data_len << + IDPF_TXD_QW1_TX_BUF_SZ_S); + uint64_t hi_qw2 = + hi_qw_tmpl | + ((uint64_t)pkt[2]->data_len << + IDPF_TXD_QW1_TX_BUF_SZ_S); + uint64_t hi_qw1 = + hi_qw_tmpl | + ((uint64_t)pkt[1]->data_len << + IDPF_TXD_QW1_TX_BUF_SZ_S); + uint64_t hi_qw0 = + hi_qw_tmpl | + ((uint64_t)pkt[0]->data_len << + IDPF_TXD_QW1_TX_BUF_SZ_S); + + __m256i desc2_3 = + _mm256_set_epi64x + (hi_qw3, + pkt[3]->buf_iova + pkt[3]->data_off, + hi_qw2, + pkt[2]->buf_iova + pkt[2]->data_off); + __m256i desc0_1 = + _mm256_set_epi64x + (hi_qw1, + pkt[1]->buf_iova + pkt[1]->data_off, + hi_qw0, + pkt[0]->buf_iova + pkt[0]->data_off); + _mm256_store_si256((void *)(txdp + 2), desc2_3); + _mm256_store_si256((void *)txdp, desc0_1); + } + + /* do any last ones */ + while (nb_pkts) { + idpf_singleq_vtx1(txdp, *pkt, flags); + txdp++, pkt++, nb_pkts--; + } +} + +static inline uint16_t +idpf_singleq_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + struct idpf_tx_queue *txq = (struct idpf_tx_queue *)tx_queue; + volatile struct idpf_base_tx_desc *txdp; + struct idpf_tx_entry *txep; + uint16_t n, nb_commit, tx_id; + uint64_t flags = IDPF_TX_DESC_CMD_EOP; + uint64_t rs = IDPF_TX_DESC_CMD_RS | flags; + + /* cross rx_thresh boundary is not allowed */ + nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh); + + if (txq->nb_free < txq->free_thresh) + idpf_singleq_tx_free_bufs_vec(txq); + + nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts); + if (unlikely(nb_pkts == 0)) + return 0; + + tx_id = txq->tx_tail; + txdp = &txq->tx_ring[tx_id]; + txep = &txq->sw_ring[tx_id]; + + txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts); + + n = (uint16_t)(txq->nb_tx_desc - tx_id); + if (nb_commit >= n) { + idpf_tx_backlog_entry(txep, tx_pkts, n); + + idpf_singleq_vtx(txdp, tx_pkts, n - 1, flags); + tx_pkts += (n - 1); + txdp += (n - 1); + + idpf_singleq_vtx1(txdp, *tx_pkts++, rs); + + nb_commit = (uint16_t)(nb_commit - n); + + tx_id = 0; + txq->next_rs = (uint16_t)(txq->rs_thresh - 1); + + /* avoid reach the end of ring */ + txdp = &txq->tx_ring[tx_id]; + txep = &txq->sw_ring[tx_id]; + } + + idpf_tx_backlog_entry(txep, tx_pkts, nb_commit); + + idpf_singleq_vtx(txdp, tx_pkts, nb_commit, flags); + + tx_id = (uint16_t)(tx_id + nb_commit); + if (tx_id > txq->next_rs) { + txq->tx_ring[txq->next_rs].qw1 |= + rte_cpu_to_le_64(((uint64_t)IDPF_TX_DESC_CMD_RS) << + IDPF_TXD_QW1_CMD_S); + txq->next_rs = + (uint16_t)(txq->next_rs + txq->rs_thresh); + } + + txq->tx_tail = tx_id; + + IDPF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail); + + return nb_pkts; +} + +uint16_t +idpf_dp_singleq_xmit_pkts_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + uint16_t nb_tx = 0; + struct idpf_tx_queue *txq = (struct idpf_tx_queue *)tx_queue; + + while (nb_pkts) { + uint16_t ret, num; + + num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh); + ret = idpf_singleq_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx], + num); + nb_tx += ret; + nb_pkts -= ret; + if (ret < num) + break; + } + + return nb_tx; +} diff --git a/drivers/common/idpf/version.map b/drivers/common/idpf/version.map index 4510aae6b3..eadcb9a2cf 100644 --- a/drivers/common/idpf/version.map +++ b/drivers/common/idpf/version.map @@ -15,6 +15,7 @@ INTERNAL { idpf_dp_splitq_xmit_pkts; idpf_dp_splitq_xmit_pkts_avx512; idpf_dp_singleq_recv_pkts_avx2; + idpf_dp_singleq_xmit_pkts_avx2; idpf_qc_rx_thresh_check; idpf_qc_rx_queue_release; diff --git a/drivers/net/idpf/idpf_rxtx.c b/drivers/net/idpf/idpf_rxtx.c index 80c6c325e8..579293b2e8 100644 --- a/drivers/net/idpf/idpf_rxtx.c +++ b/drivers/net/idpf/idpf_rxtx.c @@ -888,6 +888,12 @@ idpf_set_tx_function(struct rte_eth_dev *dev) if (idpf_tx_vec_dev_check_default(dev) == IDPF_VECTOR_PATH && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { vport->tx_vec_allowed = true; + + if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) && + rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) + vport->tx_use_avx2 = true; + if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512) #ifdef CC_AVX512_SUPPORT { @@ -947,6 +953,14 @@ idpf_set_tx_function(struct rte_eth_dev *dev) return; } #endif /* CC_AVX512_SUPPORT */ + if (vport->tx_use_avx2) { + PMD_DRV_LOG(NOTICE, + "Using Single AVX2 Vector Tx (port %d).", + dev->data->port_id); + dev->tx_pkt_burst = idpf_dp_singleq_xmit_pkts_avx2; + dev->tx_pkt_prepare = idpf_dp_prep_pkts; + return; + } } PMD_DRV_LOG(NOTICE, "Using Single Scalar Tx (port %d).", -- 2.34.1 ^ permalink raw reply [flat|nested] 4+ messages in thread
* [PATCH 0/2] enable AVX2 for IDPF single queue @ 2023-12-07 6:35 Wenzhuo Lu 2023-12-07 6:35 ` [PATCH 1/2] common/idpf: enable AVX2 for single queue Rx Wenzhuo Lu 0 siblings, 1 reply; 4+ messages in thread From: Wenzhuo Lu @ 2023-12-07 6:35 UTC (permalink / raw) To: dev; +Cc: Wenzhuo Lu In case some CPUs don't support AVX512. Enable AVX2 for them to get better per-core performance. Wenzhuo Lu (2): common/idpf: enable AVX2 for single queue Rx common/idpf: enable AVX2 for single queue Tx doc/guides/rel_notes/release_24_03.rst | 3 + drivers/common/idpf/idpf_common_device.h | 2 + drivers/common/idpf/idpf_common_rxtx.h | 8 + drivers/common/idpf/idpf_common_rxtx_avx2.c | 834 ++++++++++++++++++++ drivers/common/idpf/meson.build | 16 + drivers/common/idpf/version.map | 2 + drivers/net/idpf/idpf_rxtx.c | 26 + 7 files changed, 891 insertions(+) create mode 100644 drivers/common/idpf/idpf_common_rxtx_avx2.c -- 2.25.1 ^ permalink raw reply [flat|nested] 4+ messages in thread
* [PATCH 1/2] common/idpf: enable AVX2 for single queue Rx 2023-12-07 6:35 [PATCH 0/2] enable AVX2 for IDPF single queue Wenzhuo Lu @ 2023-12-07 6:35 ` Wenzhuo Lu 0 siblings, 0 replies; 4+ messages in thread From: Wenzhuo Lu @ 2023-12-07 6:35 UTC (permalink / raw) To: dev; +Cc: Wenzhuo Lu In case some CPUs don't support AVX512. Enable AVX2 for them to get better per-core performance. Signed-off-by: Wenzhuo Lu <wenzhuo.lu@intel.com> --- drivers/common/idpf/idpf_common_device.h | 1 + drivers/common/idpf/idpf_common_rxtx.h | 4 + drivers/common/idpf/idpf_common_rxtx_avx2.c | 609 ++++++++++++++++++++ drivers/common/idpf/meson.build | 16 + drivers/common/idpf/version.map | 1 + drivers/net/idpf/idpf_rxtx.c | 12 + 6 files changed, 643 insertions(+) create mode 100644 drivers/common/idpf/idpf_common_rxtx_avx2.c diff --git a/drivers/common/idpf/idpf_common_device.h b/drivers/common/idpf/idpf_common_device.h index f767ea7cec..afe3d48798 100644 --- a/drivers/common/idpf/idpf_common_device.h +++ b/drivers/common/idpf/idpf_common_device.h @@ -114,6 +114,7 @@ struct idpf_vport { bool rx_vec_allowed; bool tx_vec_allowed; + bool rx_use_avx2; bool rx_use_avx512; bool tx_use_avx512; diff --git a/drivers/common/idpf/idpf_common_rxtx.h b/drivers/common/idpf/idpf_common_rxtx.h index b49b1ed737..4d64063718 100644 --- a/drivers/common/idpf/idpf_common_rxtx.h +++ b/drivers/common/idpf/idpf_common_rxtx.h @@ -302,5 +302,9 @@ uint16_t idpf_dp_splitq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pk __rte_internal uint16_t idpf_dp_singleq_recv_scatter_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts); +__rte_internal +uint16_t idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); #endif /* _IDPF_COMMON_RXTX_H_ */ diff --git a/drivers/common/idpf/idpf_common_rxtx_avx2.c b/drivers/common/idpf/idpf_common_rxtx_avx2.c new file mode 100644 index 0000000000..0403cf118f --- /dev/null +++ b/drivers/common/idpf/idpf_common_rxtx_avx2.c @@ -0,0 +1,609 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2023 Intel Corporation + */ + +#include <rte_vect.h> + +#include "idpf_common_rxtx.h" +#include "idpf_common_device.h" + +#ifndef __INTEL_COMPILER +#pragma GCC diagnostic ignored "-Wcast-qual" +#endif + +static __rte_always_inline void +idpf_singleq_rx_rearm(struct idpf_rx_queue *rxq) +{ + int i; + uint16_t rx_id; + volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring; + struct rte_mbuf **rxep = &rxq->sw_ring[rxq->rxrearm_start]; + + rxdp += rxq->rxrearm_start; + + /* Pull 'n' more MBUFs into the software ring */ + if (rte_mempool_get_bulk(rxq->mp, + (void *)rxep, + IDPF_RXQ_REARM_THRESH) < 0) { + if (rxq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >= + rxq->nb_rx_desc) { + __m128i dma_addr0; + + dma_addr0 = _mm_setzero_si128(); + for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) { + rxep[i] = &rxq->fake_mbuf; + _mm_store_si128((__m128i *)&rxdp[i].read, + dma_addr0); + } + } + __atomic_fetch_add(&rxq->rx_stats.mbuf_alloc_failed, + IDPF_RXQ_REARM_THRESH, __ATOMIC_RELAXED); + + return; + } + + struct rte_mbuf *mb0, *mb1; + __m128i dma_addr0, dma_addr1; + __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, + RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 2 mbufs in one loop */ + for (i = 0; i < IDPF_RXQ_REARM_THRESH; i += 2, rxep += 2) { + __m128i vaddr0, vaddr1; + + mb0 = rxep[0]; + mb1 = rxep[1]; + + /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + + /* convert pa to dma_addr hdr/data */ + dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); + dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); + + /* add headroom to pa values */ + dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); + dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); + + /* flush desc with pa dma_addr */ + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); + } + + rxq->rxrearm_start += IDPF_RXQ_REARM_THRESH; + if (rxq->rxrearm_start >= rxq->nb_rx_desc) + rxq->rxrearm_start = 0; + + rxq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH; + + rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? + (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); + + /* Update the tail pointer on the NIC */ + IDPF_PCI_REG_WRITE(rxq->qrx_tail, rx_id); +} + +static inline __m256i +idpf_flex_rxd_to_fdir_flags_vec_avx2(const __m256i fdir_id0_7) +{ +#define FDID_MIS_MAGIC 0xFFFFFFFF + RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR != (1 << 2)); + RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13)); + const __m256i pkt_fdir_bit = _mm256_set1_epi32(RTE_MBUF_F_RX_FDIR | + RTE_MBUF_F_RX_FDIR_ID); + /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */ + const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC); + __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7, + fdir_mis_mask); + /* this XOR op results to bit-reverse the fdir_mask */ + fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask); + const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit); + + return fdir_flags; +} + +static inline uint16_t +_idpf_singleq_recv_raw_pkts_vec_avx2(struct idpf_rx_queue *rxq, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, uint8_t *split_packet) +{ +#define IDPF_DESCS_PER_LOOP_AVX 8 + + const uint32_t *ptype_tbl = rxq->adapter->ptype_tbl; + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, + 0, rxq->mbuf_initializer); + struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail]; + volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring; + const int avx_aligned = ((rxq->rx_tail & 1) == 0); + + rxdp += rxq->rx_tail; + + rte_prefetch0(rxdp); + + /* nb_pkts has to be floor-aligned to IDPF_DESCS_PER_LOOP_AVX */ + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IDPF_DESCS_PER_LOOP_AVX); + + /* See if we need to rearm the RX queue - gives the prefetch a bit + * of time to act + */ + if (rxq->rxrearm_nb > IDPF_RXQ_REARM_THRESH) + idpf_singleq_rx_rearm(rxq); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available + */ + if (!(rxdp->flex_nic_wb.status_error0 & + rte_cpu_to_le_32(1 << VIRTCHNL2_RX_FLEX_DESC_STATUS0_DD_S))) + return 0; + + /* 8 packets DD mask, LSB in each 32-bit value */ + const __m256i dd_check = _mm256_set1_epi32(1); + + /* 8 packets EOP mask, second-LSB in each 32-bit value */ + const __m256i eop_check = _mm256_slli_epi32(dd_check, + VIRTCHNL2_RX_FLEX_DESC_STATUS0_EOF_S); + + /* mask to shuffle from desc. to mbuf (2 descriptors)*/ + const __m256i shuf_msk = + _mm256_set_epi8 + (/* first descriptor */ + 0xFF, 0xFF, + 0xFF, 0xFF, /* rss hash parsed separately */ + 11, 10, /* octet 10~11, 16 bits vlan_macip */ + 5, 4, /* octet 4~5, 16 bits data_len */ + 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ + 5, 4, /* octet 4~5, 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF, /*pkt_type set as unknown */ + /* second descriptor */ + 0xFF, 0xFF, + 0xFF, 0xFF, /* rss hash parsed separately */ + 11, 10, /* octet 10~11, 16 bits vlan_macip */ + 5, 4, /* octet 4~5, 16 bits data_len */ + 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ + 5, 4, /* octet 4~5, 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF /*pkt_type set as unknown */ + ); + /** + * compile-time check the above crc and shuffle layout is correct. + * NOTE: the first field (lowest address) is given last in set_epi + * calls above. + */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); + + /* Status/Error flag masks */ + /** + * mask everything except Checksum Reports, RSS indication + * and VLAN indication. + * bit6:4 for IP/L4 checksum errors. + * bit12 is for RSS indication. + * bit13 is for VLAN indication. + */ + const __m256i flags_mask = + _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13)); + /** + * data to be shuffled by the result of the flags mask shifted by 4 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = + _mm256_set_epi8((RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | + RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + /** + * second 128-bits + * shift right 20 bits to use the low two bits to indicate + * outer checksum status + * shift right 1 bit to make sure it not exceed 255 + */ + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_BAD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1, + (RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD >> 20 | RTE_MBUF_F_RX_L4_CKSUM_GOOD | + RTE_MBUF_F_RX_IP_CKSUM_GOOD) >> 1); + const __m256i cksum_mask = + _mm256_set1_epi32(RTE_MBUF_F_RX_IP_CKSUM_MASK | + RTE_MBUF_F_RX_L4_CKSUM_MASK | + RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | + RTE_MBUF_F_RX_OUTER_L4_CKSUM_MASK); + /** + * data to be shuffled by result of flag mask, shifted down 12. + * If RSS(bit12)/VLAN(bit13) are set, + * shuffle moves appropriate flags in place. + */ + const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, + RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, + RTE_MBUF_F_RX_RSS_HASH, 0, + /* end up 128-bits */ + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, + RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, + RTE_MBUF_F_RX_RSS_HASH, 0); + + RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */ + + uint16_t i, received; + + for (i = 0, received = 0; i < nb_pkts; + i += IDPF_DESCS_PER_LOOP_AVX, + rxdp += IDPF_DESCS_PER_LOOP_AVX) { + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ + _mm256_storeu_si256((void *)&rx_pkts[i], + _mm256_loadu_si256((void *)&sw_ring[i])); +#ifdef RTE_ARCH_X86_64 + _mm256_storeu_si256 + ((void *)&rx_pkts[i + 4], + _mm256_loadu_si256((void *)&sw_ring[i + 4])); +#endif + + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; + + const __m128i raw_desc7 = + _mm_load_si128((void *)(rxdp + 7)); + rte_compiler_barrier(); + const __m128i raw_desc6 = + _mm_load_si128((void *)(rxdp + 6)); + rte_compiler_barrier(); + const __m128i raw_desc5 = + _mm_load_si128((void *)(rxdp + 5)); + rte_compiler_barrier(); + const __m128i raw_desc4 = + _mm_load_si128((void *)(rxdp + 4)); + rte_compiler_barrier(); + const __m128i raw_desc3 = + _mm_load_si128((void *)(rxdp + 3)); + rte_compiler_barrier(); + const __m128i raw_desc2 = + _mm_load_si128((void *)(rxdp + 2)); + rte_compiler_barrier(); + const __m128i raw_desc1 = + _mm_load_si128((void *)(rxdp + 1)); + rte_compiler_barrier(); + const __m128i raw_desc0 = + _mm_load_si128((void *)(rxdp + 0)); + + raw_desc6_7 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc6), + raw_desc7, 1); + raw_desc4_5 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc4), + raw_desc5, 1); + raw_desc2_3 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc2), + raw_desc3, 1); + raw_desc0_1 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc0), + raw_desc1, 1); + + if (split_packet) { + int j; + + for (j = 0; j < IDPF_DESCS_PER_LOOP_AVX; j++) + rte_mbuf_prefetch_part2(rx_pkts[i + j]); + } + + /** + * convert descriptors 4-7 into mbufs, re-arrange fields. + * Then write into the mbuf. + */ + __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk); + __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk); + + /** + * to get packet types, ptype is located in bit16-25 + * of each 128bits + */ + const __m256i ptype_mask = + _mm256_set1_epi16(VIRTCHNL2_RX_FLEX_DESC_PTYPE_M); + const __m256i ptypes6_7 = + _mm256_and_si256(raw_desc6_7, ptype_mask); + const __m256i ptypes4_5 = + _mm256_and_si256(raw_desc4_5, ptype_mask); + const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9); + const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1); + const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9); + const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1); + + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4); + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0); + /* merge the status bits into one register */ + const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7, + raw_desc4_5); + + /** + * convert descriptors 0-3 into mbufs, re-arrange fields. + * Then write into the mbuf. + */ + __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk); + __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk); + + /** + * to get packet types, ptype is located in bit16-25 + * of each 128bits + */ + const __m256i ptypes2_3 = + _mm256_and_si256(raw_desc2_3, ptype_mask); + const __m256i ptypes0_1 = + _mm256_and_si256(raw_desc0_1, ptype_mask); + const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9); + const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1); + const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9); + const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1); + + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4); + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0); + /* merge the status bits into one register */ + const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3, + raw_desc0_1); + + /** + * take the two sets of status bits and merge to one + * After merge, the packets status flags are in the + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + */ + __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, + status0_3); + + /* now do flag manipulation */ + + /* get only flag/error bits we want */ + const __m256i flag_bits = + _mm256_and_si256(status0_7, flags_mask); + /** + * l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 4)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + + __m256i l4_outer_mask = _mm256_set1_epi32(0x6); + __m256i l4_outer_flags = + _mm256_and_si256(l3_l4_flags, l4_outer_mask); + l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20); + + __m256i l3_l4_mask = _mm256_set1_epi32(~0x6); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask); + l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); + /* set rss and vlan flags */ + const __m256i rss_vlan_flag_bits = + _mm256_srli_epi32(flag_bits, 12); + const __m256i rss_vlan_flags = + _mm256_shuffle_epi8(rss_vlan_flags_shuf, + rss_vlan_flag_bits); + + /* merge flags */ + __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, + rss_vlan_flags); + + /** + * At this point, we have the 8 sets of flags in the low 16-bits + * of each 32-bit value in vlan0. + * We want to extract these, and merge them with the mbuf init + * data so we can do a single write to the mbuf to set the flags + * and all the other initialization fields. Extracting the + * appropriate flags means that we have to do a shift and blend + * for each mbuf before we do the write. However, we can also + * add in the previously computed rx_descriptor fields to + * make a single 256-bit write per mbuf + */ + /* check the structure matches expectations */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != + offsetof(struct rte_mbuf, rearm_data) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != + RTE_ALIGN(offsetof(struct rte_mbuf, + rearm_data), + 16)); + /* build up data and do writes */ + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, + rearm6, rearm7; + rearm6 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 8), + 0x04); + rearm4 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 4), + 0x04); + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(mbuf_flags, 4), + 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + /* write to mbuf */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, + rearm6); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, + rearm4); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, + rearm2); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, + rearm0); + + /* repeat for the odd mbufs */ + const __m256i odd_flags = + _mm256_castsi128_si256 + (_mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 8), + 0x04); + rearm5 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 4), + 0x04); + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(odd_flags, 4), + 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + /* again write to mbufs */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, + rearm7); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, + rearm5); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, + rearm3); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, + rearm1); + + /* extract and record EOP bit */ + if (split_packet) { + const __m128i eop_mask = + _mm_set1_epi16(1 << VIRTCHNL2_RX_FLEX_DESC_STATUS0_EOF_S); + const __m256i eop_bits256 = _mm256_and_si256(status0_7, + eop_check); + /* pack status bits into a single 128-bit register */ + const __m128i eop_bits = + _mm_packus_epi32 + (_mm256_castsi256_si128(eop_bits256), + _mm256_extractf128_si256(eop_bits256, + 1)); + /** + * flip bits, and mask out the EOP bit, which is now + * a split-packet bit i.e. !EOP, rather than EOP one. + */ + __m128i split_bits = _mm_andnot_si128(eop_bits, + eop_mask); + /** + * eop bits are out of order, so we need to shuffle them + * back into order again. In doing so, only use low 8 + * bits, which acts like another pack instruction + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 + * [Since we use epi8, the 16-bit positions are + * multiplied by 2 in the eop_shuffle value.] + */ + __m128i eop_shuffle = + _mm_set_epi8(/* zero hi 64b */ + 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, + /* move values to lo 64b */ + 8, 0, 10, 2, + 12, 4, 14, 6); + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); + *(uint64_t *)split_packet = + _mm_cvtsi128_si64(split_bits); + split_packet += IDPF_DESCS_PER_LOOP_AVX; + } + + /* perform dd_check */ + status0_7 = _mm256_and_si256(status0_7, dd_check); + status0_7 = _mm256_packs_epi32(status0_7, + _mm256_setzero_si256()); + + uint64_t burst = __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_extracti128_si256 + (status0_7, 1))); + burst += __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_castsi256_si128(status0_7))); + received += burst; + if (burst != IDPF_DESCS_PER_LOOP_AVX) + break; + } + + /* update tail pointers */ + rxq->rx_tail += received; + rxq->rx_tail &= (rxq->nb_rx_desc - 1); + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ + rxq->rx_tail--; + received--; + } + rxq->rxrearm_nb += received; + return received; +} + +/** + * Notice: + * - nb_pkts < IDPF_DESCS_PER_LOOP, just return no packet + */ +uint16_t +idpf_dp_singleq_recv_pkts_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _idpf_singleq_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); +} diff --git a/drivers/common/idpf/meson.build b/drivers/common/idpf/meson.build index 80c8906f80..6ab1c8175d 100644 --- a/drivers/common/idpf/meson.build +++ b/drivers/common/idpf/meson.build @@ -16,6 +16,22 @@ sources = files( ) if arch_subdir == 'x86' + # compile AVX2 version if either: + # a. we have AVX supported in minimum instruction set baseline + # b. it's not minimum instruction set, but supported by compiler + if cc.get_define('__AVX2__', args: machine_args) != '' + cflags += ['-DCC_AVX2_SUPPORT'] + sources += files('idpf_common_rxtx_avx2.c') + elif cc.has_argument('-mavx2') + cflags += ['-DCC_AVX2_SUPPORT'] + idpf_avx2_lib = static_library('idpf_avx2_lib', + 'idpf_common_rxtx_avx2.c', + dependencies: [static_rte_ethdev, static_rte_kvargs, static_rte_hash], + include_directories: includes, + c_args: [cflags, '-mavx2']) + objs += idpf_avx2_lib.extract_objects('idpf_common_rxtx_avx2.c') + endif + idpf_avx512_cpu_support = ( cc.get_define('__AVX512F__', args: machine_args) != '' and cc.get_define('__AVX512BW__', args: machine_args) != '' and diff --git a/drivers/common/idpf/version.map b/drivers/common/idpf/version.map index 0729f6b912..4510aae6b3 100644 --- a/drivers/common/idpf/version.map +++ b/drivers/common/idpf/version.map @@ -14,6 +14,7 @@ INTERNAL { idpf_dp_splitq_recv_pkts_avx512; idpf_dp_splitq_xmit_pkts; idpf_dp_splitq_xmit_pkts_avx512; + idpf_dp_singleq_recv_pkts_avx2; idpf_qc_rx_thresh_check; idpf_qc_rx_queue_release; diff --git a/drivers/net/idpf/idpf_rxtx.c b/drivers/net/idpf/idpf_rxtx.c index 64f2235580..b155c9ccd1 100644 --- a/drivers/net/idpf/idpf_rxtx.c +++ b/drivers/net/idpf/idpf_rxtx.c @@ -772,6 +772,11 @@ idpf_set_rx_function(struct rte_eth_dev *dev) rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { vport->rx_vec_allowed = true; + if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 || + rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) && + rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256) + vport->rx_use_avx2 = true; + if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512) #ifdef CC_AVX512_SUPPORT if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 && @@ -823,6 +828,13 @@ idpf_set_rx_function(struct rte_eth_dev *dev) return; } #endif /* CC_AVX512_SUPPORT */ + if (vport->rx_use_avx2) { + PMD_DRV_LOG(NOTICE, + "Using Single AVX2 Vector Rx (port %d).", + dev->data->port_id); + dev->rx_pkt_burst = idpf_dp_singleq_recv_pkts_avx2; + return; + } } if (dev->data->scattered_rx) { -- 2.25.1 ^ permalink raw reply [flat|nested] 4+ messages in thread
end of thread, other threads:[~2025-01-08 12:16 UTC | newest] Thread overview: 4+ messages (download: mbox.gz / follow: Atom feed) -- links below jump to the message on this page -- 2025-01-08 12:17 [PATCH 0/2] enable AVX2 for IDPF single queue Shaiq Wani 2025-01-08 12:17 ` [PATCH 1/2] common/idpf: enable AVX2 for single queue Rx Shaiq Wani 2025-01-08 12:17 ` [PATCH 2/2] common/idpf: enable AVX2 for single queue Tx Shaiq Wani -- strict thread matches above, loose matches on Subject: below -- 2023-12-07 6:35 [PATCH 0/2] enable AVX2 for IDPF single queue Wenzhuo Lu 2023-12-07 6:35 ` [PATCH 1/2] common/idpf: enable AVX2 for single queue Rx Wenzhuo Lu
This is a public inbox, see mirroring instructions for how to clone and mirror all data and code used for this inbox; as well as URLs for NNTP newsgroup(s).