DPDK patches and discussions
 help / color / mirror / Atom feed
* [PATCH] net: optimize raw checksum computation
@ 2026-01-05 23:27 scott.k.mitch1
  2026-01-06 10:59 ` Morten Brørup
  0 siblings, 1 reply; 4+ messages in thread
From: scott.k.mitch1 @ 2026-01-05 23:27 UTC (permalink / raw)
  To: dev; +Cc: Scott Mitchell

From: Scott Mitchell <scott.k.mitch1@gmail.com>

Optimize __rte_raw_cksum() by processing data in larger unrolled loops
instead of iterating word-by-word. The new implementation processes
64-byte blocks (32 x uint16_t) in the hot path, followed by smaller
32/16/8/4/2-byte chunks.

Uses uint64_t accumulator to reduce carry propagation overhead and
leverages unaligned_uint16_t for safe unaligned access on all platforms.

Performance results from cksum_perf_autotest (TSC cycles/byte):
  Block size    Before    After    Improvement
         100  0.40-0.64  0.13-0.14    ~3-4x
        1500  0.49-0.51  0.10-0.11    ~4-5x
        9000  0.48-0.51  0.11-0.12    ~4x

Signed-off-by: Scott Mitchell <scott.k.mitch1@gmail.com>
---
 app/test/meson.build       |   1 +
 app/test/test_cksum_fuzz.c | 241 +++++++++++++++++++++++++++++++++++++
 app/test/test_cksum_perf.c |   2 +-
 lib/net/rte_cksum.h        |  63 ++++++++--
 4 files changed, 295 insertions(+), 12 deletions(-)
 create mode 100644 app/test/test_cksum_fuzz.c

diff --git a/app/test/meson.build b/app/test/meson.build
index efec42a6bf..c92325ad58 100644
--- a/app/test/meson.build
+++ b/app/test/meson.build
@@ -38,6 +38,7 @@ source_file_deps = {
     'test_byteorder.c': [],
     'test_cfgfile.c': ['cfgfile'],
     'test_cksum.c': ['net'],
+    'test_cksum_fuzz.c': ['net'],
     'test_cksum_perf.c': ['net'],
     'test_cmdline.c': [],
     'test_cmdline_cirbuf.c': [],
diff --git a/app/test/test_cksum_fuzz.c b/app/test/test_cksum_fuzz.c
new file mode 100644
index 0000000000..cc3c3e71e1
--- /dev/null
+++ b/app/test/test_cksum_fuzz.c
@@ -0,0 +1,241 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2026 Apple Inc.
+ */
+
+#include <stdio.h>
+#include <string.h>
+
+#include <rte_common.h>
+#include <rte_cycles.h>
+#include <rte_hexdump.h>
+#include <rte_cksum.h>
+#include <rte_malloc.h>
+#include <rte_random.h>
+
+#include "test.h"
+
+/*
+ * Fuzz test for __rte_raw_cksum optimization.
+ * Compares the optimized implementation against the original reference
+ * implementation across random data of various lengths.
+ */
+
+#define DEFAULT_ITERATIONS 1000
+#define MAX_TEST_LEN 65536  /* 64K to match GRO frame sizes */
+
+/*
+ * Original (reference) implementation of __rte_raw_cksum from DPDK v23.11.
+ * This is retained here for comparison testing against the optimized version.
+ */
+static inline uint32_t
+__rte_raw_cksum_reference(const void *buf, size_t len, uint32_t sum)
+{
+	const void *end;
+
+	for (end = RTE_PTR_ADD(buf, RTE_ALIGN_FLOOR(len, sizeof(uint16_t)));
+	     buf != end; buf = RTE_PTR_ADD(buf, sizeof(uint16_t))) {
+		uint16_t v;
+
+		memcpy(&v, buf, sizeof(uint16_t));
+		sum += v;
+	}
+
+	/* if length is odd, keeping it byte order independent */
+	if (unlikely(len % 2)) {
+		uint16_t left = 0;
+
+		memcpy(&left, end, 1);
+		sum += left;
+	}
+
+	return sum;
+}
+
+static void
+init_random_buffer(uint8_t *buf, size_t len)
+{
+	size_t i;
+
+	for (i = 0; i < len; i++)
+		buf[i] = (uint8_t)rte_rand();
+}
+
+static inline uint32_t
+get_initial_sum(bool random_initial_sum)
+{
+	return random_initial_sum ? (rte_rand() & 0xFFFFFFFF) : 0;
+}
+
+/*
+ * Test a single buffer length with specific alignment and initial sum
+ */
+static int
+test_cksum_fuzz_length_aligned(size_t len, bool aligned, uint32_t initial_sum)
+{
+	uint8_t *data;
+	uint8_t *buf;
+	size_t alloc_size;
+	uint32_t sum_ref, sum_opt;
+
+	if (len == 0 && !aligned) {
+		/* Skip unaligned test for zero length - nothing to test */
+		return TEST_SUCCESS;
+	}
+
+	/* Allocate exact size for aligned, +1 for unaligned offset */
+	alloc_size = aligned ? len : len + 1;
+	if (alloc_size == 0)
+		alloc_size = 1;  /* rte_malloc doesn't like 0 */
+
+	data = rte_malloc(NULL, alloc_size, 64);
+	if (data == NULL) {
+		printf("Failed to allocate %zu bytes\n", alloc_size);
+		return TEST_FAILED;
+	}
+
+	buf = aligned ? data : (data + 1);
+
+	init_random_buffer(buf, len);
+
+	sum_ref = __rte_raw_cksum_reference(buf, len, initial_sum);
+	sum_opt = __rte_raw_cksum(buf, len, initial_sum);
+
+	if (sum_ref != sum_opt) {
+		printf("MISMATCH at len=%zu aligned='%s' initial_sum=0x%08x ref=0x%08x opt=0x%08x\n",
+		       len, aligned ? "aligned" : "unaligned",
+		       initial_sum, sum_ref, sum_opt);
+		rte_hexdump(stdout, "failing buffer", buf, len);
+		rte_free(data);
+		return TEST_FAILED;
+	}
+
+	rte_free(data);
+	return TEST_SUCCESS;
+}
+
+/*
+ * Test a length with both alignments
+ */
+static int
+test_cksum_fuzz_length(size_t len, uint32_t initial_sum)
+{
+	int rc;
+
+	/* Test aligned */
+	rc = test_cksum_fuzz_length_aligned(len, true, initial_sum);
+	if (rc != TEST_SUCCESS)
+		return rc;
+
+	/* Test unaligned */
+	rc = test_cksum_fuzz_length_aligned(len, false, initial_sum);
+
+	return rc;
+}
+
+/*
+ * Test specific edge case lengths
+ */
+static int
+test_cksum_fuzz_edge_cases(void)
+{
+	/* Edge case lengths that might trigger bugs */
+	static const size_t edge_lengths[] = {
+		0, 1, 2, 3, 4, 5, 6, 7, 8,
+		15, 16, 17,
+		31, 32, 33,
+		63, 64, 65,
+		127, 128, 129,
+		255, 256, 257,
+		511, 512, 513,
+		1023, 1024, 1025,
+		1500, 1501,  /* MTU boundaries */
+		2047, 2048, 2049,
+		4095, 4096, 4097,
+		8191, 8192, 8193,
+		16383, 16384, 16385,
+		32767, 32768, 32769,
+		65534, 65535, 65536  /* 64K GRO boundaries */
+	};
+	unsigned int i;
+	int rc;
+
+	printf("Testing edge case lengths...\n");
+
+	for (i = 0; i < RTE_DIM(edge_lengths); i++) {
+		/* Test with zero initial sum */
+		rc = test_cksum_fuzz_length(edge_lengths[i], 0);
+		if (rc != TEST_SUCCESS)
+			return rc;
+
+		/* Test with random initial sum */
+		rc = test_cksum_fuzz_length(edge_lengths[i], get_initial_sum(true));
+		if (rc != TEST_SUCCESS)
+			return rc;
+	}
+
+	return TEST_SUCCESS;
+}
+
+/*
+ * Test random lengths with optional random initial sums
+ */
+static int
+test_cksum_fuzz_random(unsigned int iterations, bool random_initial_sum)
+{
+	unsigned int i;
+	int rc;
+
+	printf("Testing random lengths (0-%d)%s...\n", MAX_TEST_LEN,
+	       random_initial_sum ? " with random initial sums" : "");
+
+	for (i = 0; i < iterations; i++) {
+		size_t len = rte_rand() % (MAX_TEST_LEN + 1);
+
+		rc = test_cksum_fuzz_length(len, get_initial_sum(random_initial_sum));
+		if (rc != TEST_SUCCESS) {
+			printf("Failed at len=%zu\n", len);
+			return rc;
+		}
+	}
+
+	return TEST_SUCCESS;
+}
+
+static int
+test_cksum_fuzz(void)
+{
+	int rc;
+	unsigned int iterations = DEFAULT_ITERATIONS;
+
+	printf("### __rte_raw_cksum optimization fuzz test ###\n");
+	printf("Iterations per test: %u\n\n", iterations);
+
+	/* Test edge cases */
+	rc = test_cksum_fuzz_edge_cases();
+	if (rc != TEST_SUCCESS) {
+		printf("Edge case test FAILED\n");
+		return rc;
+	}
+	printf("Edge case test PASSED\n\n");
+
+	/* Test random lengths with zero initial sum */
+	rc = test_cksum_fuzz_random(iterations, false);
+	if (rc != TEST_SUCCESS) {
+		printf("Random length test FAILED\n");
+		return rc;
+	}
+	printf("Random length test PASSED\n\n");
+
+	/* Test random lengths with random initial sums */
+	rc = test_cksum_fuzz_random(iterations, true);
+	if (rc != TEST_SUCCESS) {
+		printf("Random initial sum test FAILED\n");
+		return rc;
+	}
+	printf("Random initial sum test PASSED\n\n");
+
+	printf("All fuzz tests PASSED!\n");
+	return TEST_SUCCESS;
+}
+
+REGISTER_FAST_TEST(cksum_fuzz_autotest, true, true, test_cksum_fuzz);
diff --git a/app/test/test_cksum_perf.c b/app/test/test_cksum_perf.c
index 0b919cd59f..092332ceba 100644
--- a/app/test/test_cksum_perf.c
+++ b/app/test/test_cksum_perf.c
@@ -15,7 +15,7 @@
 #define NUM_BLOCKS 10
 #define ITERATIONS 1000000
 
-static const size_t data_sizes[] = { 20, 21, 100, 101, 1500, 1501 };
+static const size_t data_sizes[] = { 20, 21, 100, 101, 1500, 1501, 9000, 9001 };
 
 static __rte_noinline uint16_t
 do_rte_raw_cksum(const void *buf, size_t len)
diff --git a/lib/net/rte_cksum.h b/lib/net/rte_cksum.h
index a8e8927952..0322e69a74 100644
--- a/lib/net/rte_cksum.h
+++ b/lib/net/rte_cksum.h
@@ -42,25 +42,66 @@ extern "C" {
 static inline uint32_t
 __rte_raw_cksum(const void *buf, size_t len, uint32_t sum)
 {
-	const void *end;
+	const void *ptr = buf;
+	const void *end = RTE_PTR_ADD(ptr, RTE_ALIGN_FLOOR(len, 64));
+	uint64_t sum64 = sum;
+
+	/* Process in 64 byte blocks (32 x uint16_t). */
+	/* Always process as uint16_t chunks to preserve overflow/carry. */
+	while (ptr != end) {
+		const unaligned_uint16_t *p16 = (const unaligned_uint16_t *)ptr;
+		sum64 += p16[0] + p16[1] + p16[2] + p16[3] +
+			 p16[4] + p16[5] + p16[6] + p16[7] +
+			 p16[8] + p16[9] + p16[10] + p16[11] +
+			 p16[12] + p16[13] + p16[14] + p16[15] +
+			 p16[16] + p16[17] + p16[18] + p16[19] +
+			 p16[20] + p16[21] + p16[22] + p16[23] +
+			 p16[24] + p16[25] + p16[26] + p16[27] +
+			 p16[28] + p16[29] + p16[30] + p16[31];
+		ptr = RTE_PTR_ADD(ptr, 64);
+	}
 
-	for (end = RTE_PTR_ADD(buf, RTE_ALIGN_FLOOR(len, sizeof(uint16_t)));
-	     buf != end; buf = RTE_PTR_ADD(buf, sizeof(uint16_t))) {
-		uint16_t v;
+	if ((len & 32) != 0) {
+		const unaligned_uint16_t *p16 = (const unaligned_uint16_t *)ptr;
+		sum64 += p16[0] + p16[1] + p16[2] + p16[3] +
+			 p16[4] + p16[5] + p16[6] + p16[7] +
+			 p16[8] + p16[9] + p16[10] + p16[11] +
+			 p16[12] + p16[13] + p16[14] + p16[15];
+		ptr = RTE_PTR_ADD(ptr, 32);
+	}
 
-		memcpy(&v, buf, sizeof(uint16_t));
-		sum += v;
+	if ((len & 16) != 0) {
+		const unaligned_uint16_t *p16 = (const unaligned_uint16_t *)ptr;
+		sum64 += p16[0] + p16[1] + p16[2] + p16[3] + p16[4] + p16[5] + p16[6] + p16[7];
+		ptr = RTE_PTR_ADD(ptr, 16);
+	}
+
+	if ((len & 8) != 0) {
+		const unaligned_uint16_t *p16 = (const unaligned_uint16_t *)ptr;
+		sum64 += p16[0] + p16[1] + p16[2] + p16[3];
+		ptr = RTE_PTR_ADD(ptr, 8);
+	}
+
+	if ((len & 4) != 0) {
+		const unaligned_uint16_t *p16 = (const unaligned_uint16_t *)ptr;
+		sum64 += p16[0] + p16[1];
+		ptr = RTE_PTR_ADD(ptr, 4);
+	}
+
+	if ((len & 2) != 0) {
+		const unaligned_uint16_t *p16 = (const unaligned_uint16_t *)ptr;
+		sum64 += *p16;
+		ptr = RTE_PTR_ADD(ptr, 2);
 	}
 
 	/* if length is odd, keeping it byte order independent */
-	if (unlikely(len % 2)) {
+	if (unlikely(len & 1)) {
 		uint16_t left = 0;
-
-		memcpy(&left, end, 1);
-		sum += left;
+		memcpy(&left, ptr, 1);
+		sum64 += left;
 	}
 
-	return sum;
+	return (uint32_t)sum64;
 }
 
 /**
-- 
2.39.5 (Apple Git-154)


^ permalink raw reply	[flat|nested] 4+ messages in thread

* RE: [PATCH] net: optimize raw checksum computation
  2026-01-05 23:27 [PATCH] net: optimize raw checksum computation scott.k.mitch1
@ 2026-01-06 10:59 ` Morten Brørup
  2026-01-06 18:16   ` Scott Mitchell
  0 siblings, 1 reply; 4+ messages in thread
From: Morten Brørup @ 2026-01-06 10:59 UTC (permalink / raw)
  To: Scott Mitchell, dev

> From: Scott Mitchell <scott.k.mitch1@gmail.com>
> 
> Optimize __rte_raw_cksum() by processing data in larger unrolled loops
> instead of iterating word-by-word. The new implementation processes
> 64-byte blocks (32 x uint16_t) in the hot path, followed by smaller
> 32/16/8/4/2-byte chunks.

Good idea processing in 64-byte blocks!

I wonder if there would be further gain by 64-byte aligning the 64-byte chunks, so the compiler can use vector instructions for summing the 32 2-byte words of each 64-byte chunk.
This would require a 3-step algorithm:
1. Process the first 0..63 bytes preceding the first 64-byte aligned address. (These bytes are unaligned; nothing new here.)
2. Process 64-byte chunks, if any. These are now 64-byte aligned, and you should ensure that the compiler knows it.
3. Process the last 32/16/8/4/2/1-byte chunks. These are now aligned, which eliminates the need for unaligned_uint16_t in this step. Specifically, the 32-byte chunk will be 64-byte aligned, allowing the compiler to use vector instructions. The 16-byte chunk will be 32-byte aligned. Etc.

<random idea>
Step 1 may be performed in reverse order of step 3, i.e. process in chunks of 1/2/4/8/16/32 bytes (using the lowest bits of the address as condition) - which will cause the alignment to increase accordingly.
</random idea>

<feature creep>
Checking the alignment at runtime has a non-zero cost, so a an alternative (simpler) code path might be beneficial for small lengths (when the alignment is unknown at runtime).
</feature creep>

> 
> Uses uint64_t accumulator to reduce carry propagation overhead

You return (uint32_t)sum64 at the end, so why replace the existing 32-bit "sum" with a 64-bit "sum64" accumulator?

> and
> leverages unaligned_uint16_t for safe unaligned access on all
> platforms.
> 
> Performance results from cksum_perf_autotest (TSC cycles/byte):
>   Block size    Before    After    Improvement
>          100  0.40-0.64  0.13-0.14    ~3-4x
>         1500  0.49-0.51  0.10-0.11    ~4-5x
>         9000  0.48-0.51  0.11-0.12    ~4x
> 
> Signed-off-by: Scott Mitchell <scott.k.mitch1@gmail.com>


^ permalink raw reply	[flat|nested] 4+ messages in thread

* Re: [PATCH] net: optimize raw checksum computation
  2026-01-06 10:59 ` Morten Brørup
@ 2026-01-06 18:16   ` Scott Mitchell
  2026-01-06 19:00     ` Morten Brørup
  0 siblings, 1 reply; 4+ messages in thread
From: Scott Mitchell @ 2026-01-06 18:16 UTC (permalink / raw)
  To: Morten Brørup; +Cc: dev

On Tue, Jan 6, 2026 at 5:59 AM Morten Brørup <mb@smartsharesystems.com> wrote:
>
> > From: Scott Mitchell <scott.k.mitch1@gmail.com>
> >
> > Optimize __rte_raw_cksum() by processing data in larger unrolled loops
> > instead of iterating word-by-word. The new implementation processes
> > 64-byte blocks (32 x uint16_t) in the hot path, followed by smaller
> > 32/16/8/4/2-byte chunks.
>
> Good idea processing in 64-byte blocks!
>
> I wonder if there would be further gain by 64-byte aligning the 64-byte chunks, so the compiler can use vector instructions for summing the 32 2-byte words of each 64-byte chunk.
> This would require a 3-step algorithm:
> 1. Process the first 0..63 bytes preceding the first 64-byte aligned address. (These bytes are unaligned; nothing new here.)
> 2. Process 64-byte chunks, if any. These are now 64-byte aligned, and you should ensure that the compiler knows it.
> 3. Process the last 32/16/8/4/2/1-byte chunks. These are now aligned, which eliminates the need for unaligned_uint16_t in this step. Specifically, the 32-byte chunk will be 64-byte aligned, allowing the compiler to use vector instructions. The 16-byte chunk will be 32-byte aligned. Etc.
>
> <random idea>
> Step 1 may be performed in reverse order of step 3, i.e. process in chunks of 1/2/4/8/16/32 bytes (using the lowest bits of the address as condition) - which will cause the alignment to increase accordingly.
> </random idea>
>
> <feature creep>
> Checking the alignment at runtime has a non-zero cost, so a an alternative (simpler) code path might be beneficial for small lengths (when the alignment is unknown at runtime).
> </feature creep>
>

Good idea! I implemented your suggestion but I didn't observe a
measurable difference in cksum_perf_autotest. I suggest we proceed
with the approach in this patch as an incremental step and I can post
a followup with your suggestion above to review/discuss. Note the
checksum computation requires processing in 16 bit blocks for
correctness which requires special case handling for odd
length/buffer-address alignment so complexity/code is higher.

> >
> > Uses uint64_t accumulator to reduce carry propagation overhead
>
> You return (uint32_t)sum64 at the end, so why replace the existing 32-bit "sum" with a 64-bit "sum64" accumulator?

Good catch. It gives more headroom to avoid overflow but not necessary
and I will revert.

>
> > and
> > leverages unaligned_uint16_t for safe unaligned access on all
> > platforms.
> >
> > Performance results from cksum_perf_autotest (TSC cycles/byte):
> >   Block size    Before    After    Improvement
> >          100  0.40-0.64  0.13-0.14    ~3-4x
> >         1500  0.49-0.51  0.10-0.11    ~4-5x
> >         9000  0.48-0.51  0.11-0.12    ~4x
> >
> > Signed-off-by: Scott Mitchell <scott.k.mitch1@gmail.com>
>

^ permalink raw reply	[flat|nested] 4+ messages in thread

* RE: [PATCH] net: optimize raw checksum computation
  2026-01-06 18:16   ` Scott Mitchell
@ 2026-01-06 19:00     ` Morten Brørup
  0 siblings, 0 replies; 4+ messages in thread
From: Morten Brørup @ 2026-01-06 19:00 UTC (permalink / raw)
  To: Scott Mitchell; +Cc: dev

> From: Scott Mitchell [mailto:scott.k.mitch1@gmail.com]
> Sent: Tuesday, 6 January 2026 19.16
> 
> On Tue, Jan 6, 2026 at 5:59 AM Morten Brørup <mb@smartsharesystems.com>
> wrote:
> >
> > > From: Scott Mitchell <scott.k.mitch1@gmail.com>
> > >
> > > Optimize __rte_raw_cksum() by processing data in larger unrolled
> loops
> > > instead of iterating word-by-word. The new implementation processes
> > > 64-byte blocks (32 x uint16_t) in the hot path, followed by smaller
> > > 32/16/8/4/2-byte chunks.
> >
> > Good idea processing in 64-byte blocks!
> >
> > I wonder if there would be further gain by 64-byte aligning the 64-
> byte chunks, so the compiler can use vector instructions for summing
> the 32 2-byte words of each 64-byte chunk.
> > This would require a 3-step algorithm:
> > 1. Process the first 0..63 bytes preceding the first 64-byte aligned
> address. (These bytes are unaligned; nothing new here.)
> > 2. Process 64-byte chunks, if any. These are now 64-byte aligned, and
> you should ensure that the compiler knows it.
> > 3. Process the last 32/16/8/4/2/1-byte chunks. These are now aligned,
> which eliminates the need for unaligned_uint16_t in this step.
> Specifically, the 32-byte chunk will be 64-byte aligned, allowing the
> compiler to use vector instructions. The 16-byte chunk will be 32-byte
> aligned. Etc.
> >
> > <random idea>
> > Step 1 may be performed in reverse order of step 3, i.e. process in
> chunks of 1/2/4/8/16/32 bytes (using the lowest bits of the address as
> condition) - which will cause the alignment to increase accordingly.
> > </random idea>
> >
> > <feature creep>
> > Checking the alignment at runtime has a non-zero cost, so a an
> alternative (simpler) code path might be beneficial for small lengths
> (when the alignment is unknown at runtime).
> > </feature creep>
> >
> 
> Good idea! I implemented your suggestion but I didn't observe a
> measurable difference in cksum_perf_autotest. I suggest we proceed
> with the approach in this patch as an incremental step and I can post
> a followup with your suggestion above to review/discuss.

Strongly agree to proceed with this patch first.
It brings a big performance benefit, while remaining relatively simple.

Then vector optimized variants can be experimented with later.
Thanks for trying it out.

> Note the
> checksum computation requires processing in 16 bit blocks for
> correctness which requires special case handling for odd
> length/buffer-address alignment so complexity/code is higher.

Good point. The vector optimized variant might not be as simple as initially thought.

> 
> > >
> > > Uses uint64_t accumulator to reduce carry propagation overhead
> >
> > You return (uint32_t)sum64 at the end, so why replace the existing
> 32-bit "sum" with a 64-bit "sum64" accumulator?
> 
> Good catch. It gives more headroom to avoid overflow but not necessary
> and I will revert.

Thanks.

> 
> >
> > > and
> > > leverages unaligned_uint16_t for safe unaligned access on all
> > > platforms.
> > >
> > > Performance results from cksum_perf_autotest (TSC cycles/byte):
> > >   Block size    Before    After    Improvement
> > >          100  0.40-0.64  0.13-0.14    ~3-4x
> > >         1500  0.49-0.51  0.10-0.11    ~4-5x
> > >         9000  0.48-0.51  0.11-0.12    ~4x
> > >
> > > Signed-off-by: Scott Mitchell <scott.k.mitch1@gmail.com>
> >

^ permalink raw reply	[flat|nested] 4+ messages in thread

end of thread, other threads:[~2026-01-07  8:56 UTC | newest]

Thread overview: 4+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2026-01-05 23:27 [PATCH] net: optimize raw checksum computation scott.k.mitch1
2026-01-06 10:59 ` Morten Brørup
2026-01-06 18:16   ` Scott Mitchell
2026-01-06 19:00     ` Morten Brørup

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).