From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from mga02.intel.com (mga02.intel.com [134.134.136.20]) by dpdk.org (Postfix) with ESMTP id 2585A4C6E for ; Wed, 28 May 2014 21:27:01 +0200 (CEST) Received: from orsmga002.jf.intel.com ([10.7.209.21]) by orsmga101.jf.intel.com with ESMTP; 28 May 2014 12:27:12 -0700 X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="4.98,929,1392192000"; d="scan'208";a="547963439" Received: from irvmail001.ir.intel.com ([163.33.26.43]) by orsmga002.jf.intel.com with ESMTP; 28 May 2014 12:27:06 -0700 Received: from sivswdev02.ir.intel.com (sivswdev02.ir.intel.com [10.237.217.46]) by irvmail001.ir.intel.com (8.14.3/8.13.6/MailSET/Hub) with ESMTP id s4SJR6fm017621; Wed, 28 May 2014 20:27:06 +0100 Received: from sivswdev02.ir.intel.com (localhost [127.0.0.1]) by sivswdev02.ir.intel.com with ESMTP id s4SJR6Mf010846; Wed, 28 May 2014 20:27:06 +0100 Received: (from kananye1@localhost) by sivswdev02.ir.intel.com with id s4SJR5XL010842; Wed, 28 May 2014 20:27:05 +0100 From: Konstantin Ananyev To: dev@dpdk.org Date: Wed, 28 May 2014 20:26:46 +0100 Message-Id: <1401305210-10357-2-git-send-email-konstantin.ananyev@intel.com> X-Mailer: git-send-email 1.7.0.7 In-Reply-To: <1401305210-10357-1-git-send-email-konstantin.ananyev@intel.com> References: <1401305210-10357-1-git-send-email-konstantin.ananyev@intel.com> To: dev@dpdk.org Subject: [dpdk-dev] [PATCHv2 1/5] acl: Add ACL library (librte_acl) into DPDK. X-BeenThere: dev@dpdk.org X-Mailman-Version: 2.1.15 Precedence: list List-Id: patches and discussions about DPDK List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , X-List-Received-Date: Wed, 28 May 2014 19:27:03 -0000 The ACL library is used to perform an N-tuple search over a set of rules with multiple categories and find the best match for each category. Signed-off-by: Konstantin Ananyev --- config/common_linuxapp | 6 + lib/librte_acl/Makefile | 60 + lib/librte_acl/acl.h | 182 +++ lib/librte_acl/acl_bld.c | 2001 ++++++++++++++++++++++++++++++++++ lib/librte_acl/acl_gen.c | 473 ++++++++ lib/librte_acl/acl_run.c | 927 ++++++++++++++++ lib/librte_acl/acl_vect.h | 129 +++ lib/librte_acl/rte_acl.c | 413 +++++++ lib/librte_acl/rte_acl.h | 453 ++++++++ lib/librte_acl/rte_acl_osdep.h | 92 ++ lib/librte_acl/rte_acl_osdep_alone.h | 277 +++++ lib/librte_acl/tb_mem.c | 102 ++ lib/librte_acl/tb_mem.h | 73 ++ 13 files changed, 5188 insertions(+), 0 deletions(-) create mode 100644 lib/librte_acl/Makefile create mode 100644 lib/librte_acl/acl.h create mode 100644 lib/librte_acl/acl_bld.c create mode 100644 lib/librte_acl/acl_gen.c create mode 100644 lib/librte_acl/acl_run.c create mode 100644 lib/librte_acl/acl_vect.h create mode 100644 lib/librte_acl/rte_acl.c create mode 100644 lib/librte_acl/rte_acl.h create mode 100644 lib/librte_acl/rte_acl_osdep.h create mode 100644 lib/librte_acl/rte_acl_osdep_alone.h create mode 100644 lib/librte_acl/tb_mem.c create mode 100644 lib/librte_acl/tb_mem.h diff --git a/config/common_linuxapp b/config/common_linuxapp index 62619c6..fcfed6f 100644 --- a/config/common_linuxapp +++ b/config/common_linuxapp @@ -337,3 +337,9 @@ CONFIG_RTE_TEST_PMD_RECORD_BURST_STATS=n # CONFIG_RTE_NIC_BYPASS=n +# Compile librte_acl +# +CONFIG_RTE_LIBRTE_ACL=y +CONFIG_RTE_LIBRTE_ACL_DEBUG=n +CONFIG_RTE_LIBRTE_ACL_STANDALONE=n + diff --git a/lib/librte_acl/Makefile b/lib/librte_acl/Makefile new file mode 100644 index 0000000..4fe4593 --- /dev/null +++ b/lib/librte_acl/Makefile @@ -0,0 +1,60 @@ +# BSD LICENSE +# +# Copyright(c) 2010-2014 Intel Corporation. All rights reserved. +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# * Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# * Redistributions in binary form must reproduce the above copyright +# notice, this list of conditions and the following disclaimer in +# the documentation and/or other materials provided with the +# distribution. +# * Neither the name of Intel Corporation nor the names of its +# contributors may be used to endorse or promote products derived +# from this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +include $(RTE_SDK)/mk/rte.vars.mk + +# library name +LIB = librte_acl.a + +CFLAGS += -O3 +CFLAGS += $(WERROR_FLAGS) -I$(SRCDIR) + +# all source are stored in SRCS-y +SRCS-$(CONFIG_RTE_LIBRTE_ACL) += tb_mem.c + +SRCS-$(CONFIG_RTE_LIBRTE_ACL) += rte_acl.c +SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_bld.c +SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_gen.c +SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run.c + +# install this header file +SYMLINK-$(CONFIG_RTE_LIBRTE_ACL)-include := rte_acl_osdep.h +SYMLINK-$(CONFIG_RTE_LIBRTE_ACL)-include += rte_acl.h + +ifeq ($(CONFIG_RTE_LIBRTE_ACL_STANDALONE),y) +# standalone build +SYMLINK-$(CONFIG_RTE_LIBRTE_ACL)-include += rte_acl_osdep_alone.h +else +# this lib needs eal +DEPDIRS-$(CONFIG_RTE_LIBRTE_ACL) += lib/librte_eal lib/librte_malloc +endif + +include $(RTE_SDK)/mk/rte.lib.mk diff --git a/lib/librte_acl/acl.h b/lib/librte_acl/acl.h new file mode 100644 index 0000000..e6d7985 --- /dev/null +++ b/lib/librte_acl/acl.h @@ -0,0 +1,182 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _ACL_H_ +#define _ACL_H_ + +#ifdef __cplusplus +extern"C" { +#endif /* __cplusplus */ + +#define RTE_ACL_QUAD_MAX 5 +#define RTE_ACL_QUAD_SIZE 4 +#define RTE_ACL_QUAD_SINGLE UINT64_C(0x7f7f7f7f00000000) + +#define RTE_ACL_SINGLE_TRIE_SIZE 2000 + +#define RTE_ACL_DFA_MAX UINT8_MAX +#define RTE_ACL_DFA_SIZE (UINT8_MAX + 1) + +typedef int bits_t; + +#define RTE_ACL_BIT_SET_SIZE ((UINT8_MAX + 1) / (sizeof(bits_t) * CHAR_BIT)) + +struct rte_acl_bitset { + bits_t bits[RTE_ACL_BIT_SET_SIZE]; +}; + +#define RTE_ACL_NODE_DFA (0 << RTE_ACL_TYPE_SHIFT) +#define RTE_ACL_NODE_SINGLE (1U << RTE_ACL_TYPE_SHIFT) +#define RTE_ACL_NODE_QEXACT (2U << RTE_ACL_TYPE_SHIFT) +#define RTE_ACL_NODE_QRANGE (3U << RTE_ACL_TYPE_SHIFT) +#define RTE_ACL_NODE_MATCH (4U << RTE_ACL_TYPE_SHIFT) +#define RTE_ACL_NODE_TYPE (7U << RTE_ACL_TYPE_SHIFT) +#define RTE_ACL_NODE_UNDEFINED UINT32_MAX + +/* + * Structure of a node is a set of ptrs and each ptr has a bit map + * of values associated with this transition. + */ +struct rte_acl_ptr_set { + struct rte_acl_bitset values; /* input values associated with ptr */ + struct rte_acl_node *ptr; /* transition to next node */ +}; + +struct rte_acl_classifier_results { + int results[RTE_ACL_MAX_CATEGORIES]; +}; + +struct rte_acl_match_results { + uint32_t results[RTE_ACL_MAX_CATEGORIES]; + int32_t priority[RTE_ACL_MAX_CATEGORIES]; +}; + +struct rte_acl_node { + uint64_t node_index; /* index for this node */ + uint32_t level; /* level 0-n in the trie */ + uint32_t ref_count; /* ref count for this node */ + struct rte_acl_bitset values; + /* set of all values that map to another node + * (union of bits in each transition. + */ + uint32_t num_ptrs; /* number of ptr_set in use */ + uint32_t max_ptrs; /* number of allocated ptr_set */ + uint32_t min_add; /* number of ptr_set per allocation */ + struct rte_acl_ptr_set *ptrs; /* transitions array for this node */ + int32_t match_flag; + int32_t match_index; /* index to match data */ + uint32_t node_type; + int32_t fanout; + /* number of ranges (transitions w/ consecutive bits) */ + int32_t id; + struct rte_acl_match_results *mrt; /* only valid when match_flag != 0 */ + char transitions[RTE_ACL_QUAD_SIZE]; + /* boundaries for ranged node */ + struct rte_acl_node *next; + /* free list link or pointer to duplicate node during merge */ + struct rte_acl_node *prev; + /* points to node from which this node was duplicated */ + + uint32_t subtree_id; + uint32_t subtree_ref_count; + +}; +enum { + RTE_ACL_SUBTREE_NODE = 0x80000000 +}; + +/* + * Types of tries used to generate runtime structure(s) + */ +enum { + RTE_ACL_FULL_TRIE = 0, + RTE_ACL_NOSRC_TRIE = 1, + RTE_ACL_NODST_TRIE = 2, + RTE_ACL_NOPORTS_TRIE = 4, + RTE_ACL_NOVLAN_TRIE = 8, + RTE_ACL_UNUSED_TRIE = 0x80000000 +}; + + +/** MAX number of tries per one ACL context.*/ +#define RTE_ACL_MAX_TRIES 8 + +/** Max number of characters in PM name.*/ +#define RTE_ACL_NAMESIZE 32 + + +struct rte_acl_trie { + uint32_t type; + uint32_t count; + int32_t smallest; /* smallest rule in this trie */ + uint32_t root_index; + const uint32_t *data_index; + uint32_t num_data_indexes; +}; + +struct rte_acl_bld_trie { + struct rte_acl_node *trie; +}; + +struct rte_acl_ctx { + TAILQ_ENTRY(rte_acl_ctx) next; /**< Next in list. */ + char name[RTE_ACL_NAMESIZE]; + /** Name of the ACL context. */ + int32_t socket_id; + /** Socket ID to allocate memory from. */ + void *rules; + uint32_t max_rules; + uint32_t rule_sz; + uint32_t num_rules; + uint32_t num_categories; + uint32_t num_tries; + uint32_t match_index; + uint64_t no_match; + uint64_t idle; + uint64_t *trans_table; + uint32_t *data_indexes; + struct rte_acl_trie trie[RTE_ACL_MAX_TRIES]; + void *mem; + size_t mem_sz; + struct rte_acl_config config; /* copy of build config. */ +}; + +int rte_acl_gen(struct rte_acl_ctx *ctx, struct rte_acl_trie *trie, + struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries, + uint32_t num_categories, uint32_t data_index_sz, int match_num); + +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#endif /* _ACL_H_ */ diff --git a/lib/librte_acl/acl_bld.c b/lib/librte_acl/acl_bld.c new file mode 100644 index 0000000..66dd847 --- /dev/null +++ b/lib/librte_acl/acl_bld.c @@ -0,0 +1,2001 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include +#include "tb_mem.h" +#include "acl.h" + +#define ACL_POOL_ALIGN 8 +#define ACL_POOL_ALLOC_MIN 0x800000 + +/* number of pointers per alloc */ +#define ACL_PTR_ALLOC 32 + +/* variable for dividing rule sets */ +#define NODE_MAX 2500 +#define NODE_PERCENTAGE (0.40) +#define RULE_PERCENTAGE (0.40) + +/* TALLY are statistics per field */ +enum { + TALLY_0 = 0, /* number of rules that are 0% or more wild. */ + TALLY_25, /* number of rules that are 25% or more wild. */ + TALLY_50, + TALLY_75, + TALLY_100, + TALLY_DEACTIVATED, /* deactivated fields (100% wild in all rules). */ + TALLY_DEPTH, + /* number of rules that are 100% wild for this field and higher. */ + TALLY_NUM +}; + +static const uint32_t wild_limits[TALLY_DEACTIVATED] = {0, 25, 50, 75, 100}; + +enum { + ACL_INTERSECT_NONE = 0, + ACL_INTERSECT_A = 1, /* set A is a superset of A and B intersect */ + ACL_INTERSECT_B = 2, /* set B is a superset of A and B intersect */ + ACL_INTERSECT = 4, /* sets A and B intersect */ +}; + +enum { + ACL_PRIORITY_EQUAL = 0, + ACL_PRIORITY_NODE_A = 1, + ACL_PRIORITY_NODE_B = 2, + ACL_PRIORITY_MIXED = 3 +}; + + +struct acl_mem_block { + uint32_t block_size; + void *mem_ptr; +}; + +#define MEM_BLOCK_NUM 16 + +/* Single ACL rule, build representation.*/ +struct rte_acl_build_rule { + struct rte_acl_build_rule *next; + struct rte_acl_config *config; + /**< configuration for each field in the rule. */ + const struct rte_acl_rule *f; + uint32_t *wildness; +}; + +/* Context for build phase */ +struct acl_build_context { + const struct rte_acl_ctx *acx; + struct rte_acl_build_rule *build_rules; + struct rte_acl_config cfg; + uint32_t node; + uint32_t num_nodes; + uint32_t category_mask; + uint32_t num_rules; + uint32_t node_id; + uint32_t src_mask; + uint32_t num_build_rules; + uint32_t num_tries; + struct tb_mem_pool pool; + struct rte_acl_trie tries[RTE_ACL_MAX_TRIES]; + struct rte_acl_bld_trie bld_tries[RTE_ACL_MAX_TRIES]; + uint32_t data_indexes[RTE_ACL_MAX_TRIES][RTE_ACL_MAX_FIELDS]; + + /* memory free lists for nodes and blocks used for node ptrs */ + struct acl_mem_block blocks[MEM_BLOCK_NUM]; + struct rte_acl_node *node_free_list; +}; + +static int acl_merge_trie(struct acl_build_context *context, + struct rte_acl_node *node_a, struct rte_acl_node *node_b, + uint32_t level, uint32_t subtree_id, struct rte_acl_node **node_c); + +static int acl_merge(struct acl_build_context *context, + struct rte_acl_node *node_a, struct rte_acl_node *node_b, + int move, int a_subset, int level); + +static void +acl_deref_ptr(struct acl_build_context *context, + struct rte_acl_node *node, int index); + +static void * +acl_build_alloc(struct acl_build_context *context, size_t n, size_t s) +{ + uint32_t m; + void *p; + size_t alloc_size = n * s; + + /* + * look for memory in free lists + */ + for (m = 0; m < RTE_DIM(context->blocks); m++) { + if (context->blocks[m].block_size == + alloc_size && context->blocks[m].mem_ptr != NULL) { + p = context->blocks[m].mem_ptr; + context->blocks[m].mem_ptr = *((void **)p); + memset(p, 0, alloc_size); + return (p); + } + } + + /* + * return allocation from memory pool + */ + p = tb_alloc(&context->pool, alloc_size); + return (p); +} + +/* + * Free memory blocks (kept in context for reuse). + */ +static void +acl_build_free(struct acl_build_context *context, size_t s, void *p) +{ + uint32_t n; + + for (n = 0; n < RTE_DIM(context->blocks); n++) { + if (context->blocks[n].block_size == s) { + *((void **)p) = context->blocks[n].mem_ptr; + context->blocks[n].mem_ptr = p; + return; + } + } + for (n = 0; n < RTE_DIM(context->blocks); n++) { + if (context->blocks[n].block_size == 0) { + context->blocks[n].block_size = s; + *((void **)p) = NULL; + context->blocks[n].mem_ptr = p; + return; + } + } +} + +/* + * Allocate and initialize a new node. + */ +static struct rte_acl_node * +acl_alloc_node(struct acl_build_context *context, int level) +{ + struct rte_acl_node *node; + + if (context->node_free_list != NULL) { + node = context->node_free_list; + context->node_free_list = node->next; + memset(node, 0, sizeof(struct rte_acl_node)); + } else { + node = acl_build_alloc(context, sizeof(struct rte_acl_node), 1); + } + + if (node != NULL) { + node->num_ptrs = 0; + node->level = level; + node->node_type = RTE_ACL_NODE_UNDEFINED; + node->node_index = RTE_ACL_NODE_UNDEFINED; + context->num_nodes++; + node->id = context->node_id++; + } + return (node); +} + +/* + * Dereference all nodes to which this node points + */ +static void +acl_free_node(struct acl_build_context *context, + struct rte_acl_node *node) +{ + uint32_t n; + + if (node->prev != NULL) + node->prev->next = NULL; + for (n = 0; n < node->num_ptrs; n++) + acl_deref_ptr(context, node, n); + + /* free mrt if this is a match node */ + if (node->mrt != NULL) { + acl_build_free(context, sizeof(struct rte_acl_match_results), + node->mrt); + node->mrt = NULL; + } + + /* free transitions to other nodes */ + if (node->ptrs != NULL) { + acl_build_free(context, + node->max_ptrs * sizeof(struct rte_acl_ptr_set), + node->ptrs); + node->ptrs = NULL; + } + + /* put it on the free list */ + context->num_nodes--; + node->next = context->node_free_list; + context->node_free_list = node; +} + + +/* + * Include src bitset in dst bitset + */ +static void +acl_include(struct rte_acl_bitset *dst, struct rte_acl_bitset *src, bits_t mask) +{ + uint32_t n; + + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) + dst->bits[n] = (dst->bits[n] & mask) | src->bits[n]; +} + +/* + * Set dst to bits of src1 that are not in src2 + */ +static int +acl_exclude(struct rte_acl_bitset *dst, + struct rte_acl_bitset *src1, + struct rte_acl_bitset *src2) +{ + uint32_t n; + bits_t all_bits = 0; + + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) { + dst->bits[n] = src1->bits[n] & ~src2->bits[n]; + all_bits |= dst->bits[n]; + } + return (all_bits != 0); +} + +/* + * Add a pointer (ptr) to a node. + */ +static int +acl_add_ptr(struct acl_build_context *context, + struct rte_acl_node *node, + struct rte_acl_node *ptr, + struct rte_acl_bitset *bits) +{ + uint32_t n, num_ptrs; + struct rte_acl_ptr_set *ptrs = NULL; + + /* + * If there's already a pointer to the same node, just add to the bitset + */ + for (n = 0; n < node->num_ptrs; n++) { + if (node->ptrs[n].ptr != NULL) { + if (node->ptrs[n].ptr == ptr) { + acl_include(&node->ptrs[n].values, bits, -1); + acl_include(&node->values, bits, -1); + return (0); + } + } + } + + /* if there's no room for another pointer, make room */ + if (node->num_ptrs >= node->max_ptrs) { + /* add room for more pointers */ + num_ptrs = node->max_ptrs + ACL_PTR_ALLOC; + if ((ptrs = acl_build_alloc(context, num_ptrs, + sizeof(*ptrs))) == NULL) + return (-ENOMEM); + + /* copy current points to new memory allocation */ + if (node->ptrs != NULL) { + memcpy(ptrs, node->ptrs, + node->num_ptrs * sizeof(*ptrs)); + acl_build_free(context, node->max_ptrs * sizeof(*ptrs), + node->ptrs); + } + node->ptrs = ptrs; + node->max_ptrs = num_ptrs; + } + + /* Find available ptr and add a new pointer to this node */ + for (n = node->min_add; n < node->max_ptrs; n++) { + if (node->ptrs[n].ptr == NULL) { + node->ptrs[n].ptr = ptr; + acl_include(&node->ptrs[n].values, bits, 0); + acl_include(&node->values, bits, -1); + if (ptr != NULL) + ptr->ref_count++; + if (node->num_ptrs <= n) + node->num_ptrs = n + 1; + return (0); + } + } + + return (0); +} + +/* + * Add a pointer for a range of values + */ +static int +acl_add_ptr_range(struct acl_build_context *context, + struct rte_acl_node *root, + struct rte_acl_node *node, + uint8_t low, + uint8_t high) +{ + uint32_t n; + struct rte_acl_bitset bitset; + + /* clear the bitset values */ + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) + bitset.bits[n] = 0; + + /* for each bit in range, add bit to set */ + for (n = 0; n < UINT8_MAX + 1; n++) + if (n >= low && n <= high) + bitset.bits[n / (sizeof(bits_t) * 8)] |= + 1 << (n % (sizeof(bits_t) * 8)); + + return (acl_add_ptr(context, root, node, &bitset)); +} + +/* + * Generate a bitset from a byte value and mask. + */ +static int +acl_gen_mask(struct rte_acl_bitset *bitset, uint32_t value, uint32_t mask) +{ + int range = 0; + uint32_t n; + + /* clear the bitset values */ + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) + bitset->bits[n] = 0; + + /* for each bit in value/mask, add bit to set */ + for (n = 0; n < UINT8_MAX + 1; n++) { + if ((n & mask) == value) { + range++; + bitset->bits[n / (sizeof(bits_t) * 8)] |= + 1 << (n % (sizeof(bits_t) * 8)); + } + } + return (range); +} + +/* + * Determine how A and B intersect. + * Determine if A and/or B are supersets of the intersection. + */ +static int +acl_intersect_type(struct rte_acl_bitset *a_bits, + struct rte_acl_bitset *b_bits, + struct rte_acl_bitset *intersect) +{ + uint32_t n; + bits_t intersect_bits = 0; + bits_t a_superset = 0; + bits_t b_superset = 0; + + /* + * calculate and store intersection and check if A and/or B have + * bits outside the intersection (superset) + */ + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) { + intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n]; + a_superset |= a_bits->bits[n] ^ intersect->bits[n]; + b_superset |= b_bits->bits[n] ^ intersect->bits[n]; + intersect_bits |= intersect->bits[n]; + } + + n = (intersect_bits == 0 ? ACL_INTERSECT_NONE : ACL_INTERSECT) | + (b_superset == 0 ? 0 : ACL_INTERSECT_B) | + (a_superset == 0 ? 0 : ACL_INTERSECT_A); + + return (n); +} + +/* + * Check if all bits in the bitset are on + */ +static int +acl_full(struct rte_acl_node *node) +{ + uint32_t n; + bits_t all_bits = -1; + + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) + all_bits &= node->values.bits[n]; + return (all_bits == -1); +} + +/* + * Check if all bits in the bitset are off + */ +static int +acl_empty(struct rte_acl_node *node) +{ + uint32_t n; + + if (node->ref_count == 0) { + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) { + if (0 != node->values.bits[n]) + return 0; + } + return (1); + } else { + return (0); + } +} + +/* + * Compute intersection of A and B + * return 1 if there is an intersection else 0. + */ +static int +acl_intersect(struct rte_acl_bitset *a_bits, + struct rte_acl_bitset *b_bits, + struct rte_acl_bitset *intersect) +{ + uint32_t n; + bits_t all_bits = 0; + + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) { + intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n]; + all_bits |= intersect->bits[n]; + } + return (all_bits != 0); +} + +/* + * Duplicate a node + */ +static struct rte_acl_node * +acl_dup_node(struct acl_build_context *context, struct rte_acl_node *node) +{ + uint32_t n; + struct rte_acl_node *next; + + if ((next = acl_alloc_node(context, node->level)) == NULL) + return (NULL); + + /* allocate the pointers */ + if (node->num_ptrs > 0) { + next->ptrs = acl_build_alloc(context, + node->max_ptrs, + sizeof(struct rte_acl_ptr_set)); + if (next->ptrs == NULL) + return (NULL); + next->max_ptrs = node->max_ptrs; + } + + /* copy over the pointers */ + for (n = 0; n < node->num_ptrs; n++) { + if (node->ptrs[n].ptr != NULL) { + next->ptrs[n].ptr = node->ptrs[n].ptr; + next->ptrs[n].ptr->ref_count++; + acl_include(&next->ptrs[n].values, + &node->ptrs[n].values, -1); + } + } + + next->num_ptrs = node->num_ptrs; + + /* copy over node's match results */ + if (node->match_flag == 0) + next->match_flag = 0; + else { + next->match_flag = -1; + next->mrt = acl_build_alloc(context, 1, sizeof(*next->mrt)); + memcpy(next->mrt, node->mrt, sizeof(*next->mrt)); + } + + /* copy over node's bitset */ + acl_include(&next->values, &node->values, -1); + + node->next = next; + next->prev = node; + + return (next); +} + +/* + * Dereference a pointer from a node + */ +static void +acl_deref_ptr(struct acl_build_context *context, + struct rte_acl_node *node, int index) +{ + struct rte_acl_node *ref_node; + + /* De-reference the node at the specified pointer */ + if (node != NULL && node->ptrs[index].ptr != NULL) { + ref_node = node->ptrs[index].ptr; + ref_node->ref_count--; + if (ref_node->ref_count == 0) + acl_free_node(context, ref_node); + } +} + +/* + * Exclude bitset from a node pointer + * returns 0 if poiter was deref'd + * 1 otherwise. + */ +static int +acl_exclude_ptr(struct acl_build_context *context, + struct rte_acl_node *node, + int index, + struct rte_acl_bitset *b_bits) +{ + int retval = 1; + + /* + * remove bitset from node pointer and deref + * if the bitset becomes empty. + */ + if (!acl_exclude(&node->ptrs[index].values, + &node->ptrs[index].values, + b_bits)) { + acl_deref_ptr(context, node, index); + node->ptrs[index].ptr = NULL; + retval = 0; + } + + /* exclude bits from the composite bits for the node */ + acl_exclude(&node->values, &node->values, b_bits); + return retval; +} + +/* + * Remove a bitset from src ptr and move remaining ptr to dst + */ +static int +acl_move_ptr(struct acl_build_context *context, + struct rte_acl_node *dst, + struct rte_acl_node *src, + int index, + struct rte_acl_bitset *b_bits) +{ + int rc; + + if (b_bits != NULL) + if (!acl_exclude_ptr(context, src, index, b_bits)) + return (0); + + /* add src pointer to dst node */ + if ((rc = acl_add_ptr(context, dst, src->ptrs[index].ptr, + &src->ptrs[index].values)) < 0) + return (rc); + + /* remove ptr from src */ + acl_exclude_ptr(context, src, index, &src->ptrs[index].values); + return (1); +} + +/* + * acl_exclude rte_acl_bitset from src and copy remaining pointer to dst + */ +static int +acl_copy_ptr(struct acl_build_context *context, + struct rte_acl_node *dst, + struct rte_acl_node *src, + int index, + struct rte_acl_bitset *b_bits) +{ + int rc; + struct rte_acl_bitset bits; + + if (b_bits != NULL) + if (!acl_exclude(&bits, &src->ptrs[index].values, b_bits)) + return (0); + + if ((rc = acl_add_ptr(context, dst, src->ptrs[index].ptr, &bits)) < 0) + return (rc); + return (1); +} + +/* + * Fill in gaps in ptrs list with the ptr at the end of the list + */ +static void +acl_compact_node_ptrs(struct rte_acl_node *node_a) +{ + uint32_t n; + int min_add = node_a->min_add; + + while (node_a->num_ptrs > 0 && + node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL) + node_a->num_ptrs--; + + for (n = min_add; n + 1 < node_a->num_ptrs; n++) { + + /* if this entry is empty */ + if (node_a->ptrs[n].ptr == NULL) { + + /* move the last pointer to this entry */ + acl_include(&node_a->ptrs[n].values, + &node_a->ptrs[node_a->num_ptrs - 1].values, + 0); + node_a->ptrs[n].ptr = + node_a->ptrs[node_a->num_ptrs - 1].ptr; + + /* + * mark the end as empty and adjust the number + * of used pointer enum_tries + */ + node_a->ptrs[node_a->num_ptrs - 1].ptr = NULL; + while (node_a->num_ptrs > 0 && + node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL) + node_a->num_ptrs--; + } + } +} + +/* + * acl_merge helper routine. + */ +static int +acl_merge_intersect(struct acl_build_context *context, + struct rte_acl_node *node_a, uint32_t idx_a, + struct rte_acl_node *node_b, uint32_t idx_b, + int next_move, int level, + struct rte_acl_bitset *intersect_ptr) +{ + struct rte_acl_node *node_c; + + /* Duplicate A for intersection */ + if ((node_c = acl_dup_node(context, node_a->ptrs[idx_a].ptr)) == NULL) + return (-1); + + /* Remove intersection from A */ + acl_exclude_ptr(context, node_a, idx_a, intersect_ptr); + + /* + * Added link from A to C for all transitions + * in the intersection + */ + if (acl_add_ptr(context, node_a, node_c, intersect_ptr) < 0) + return (-1); + + /* merge B->node into C */ + return (acl_merge(context, node_c, node_b->ptrs[idx_b].ptr, next_move, + 0, level + 1)); +} + + +/* + * Merge the children of nodes A and B together. + * + * if match node + * For each category + * node A result = highest priority result + * if any pointers in A intersect with any in B + * For each intersection + * C = copy of node that A points to + * remove intersection from A pointer + * add a pointer to A that points to C for the intersection + * Merge C and node that B points to + * Compact the pointers in A and B + * if move flag + * If B has only one reference + * Move B pointers to A + * else + * Copy B pointers to A + */ +static int +acl_merge(struct acl_build_context *context, + struct rte_acl_node *node_a, struct rte_acl_node *node_b, + int move, int a_subset, int level) +{ + uint32_t n, m, ptrs_a, ptrs_b; + uint32_t min_add_a, min_add_b; + int intersect_type; + int node_intersect_type; + int b_full, next_move, rc; + struct rte_acl_bitset intersect_values; + struct rte_acl_bitset intersect_ptr; + + min_add_a = 0; + min_add_b = 0; + intersect_type = 0; + node_intersect_type = 0; + + if (level == 0) + a_subset = 1; + + /* + * Resolve match priorities + */ + if (node_a->match_flag != 0 || node_b->match_flag != 0) { + + if (node_a->match_flag == 0 || node_b->match_flag == 0) + RTE_LOG(ERR, ACL, "Not both matches\n"); + + if (node_b->match_flag < node_a->match_flag) + RTE_LOG(ERR, ACL, "Not same match\n"); + + for (n = 0; n < context->cfg.num_categories; n++) { + if (node_a->mrt->priority[n] < + node_b->mrt->priority[n]) { + node_a->mrt->priority[n] = + node_b->mrt->priority[n]; + node_a->mrt->results[n] = + node_b->mrt->results[n]; + } + } + } + + /* + * If the two node transitions intersect then merge the transitions. + * Check intersection for entire node (all pointers) + */ + node_intersect_type = acl_intersect_type(&node_a->values, + &node_b->values, + &intersect_values); + + if (node_intersect_type & ACL_INTERSECT) { + + b_full = acl_full(node_b); + + min_add_b = node_b->min_add; + node_b->min_add = node_b->num_ptrs; + ptrs_b = node_b->num_ptrs; + + min_add_a = node_a->min_add; + node_a->min_add = node_a->num_ptrs; + ptrs_a = node_a->num_ptrs; + + for (n = 0; n < ptrs_a; n++) { + for (m = 0; m < ptrs_b; m++) { + + if (node_a->ptrs[n].ptr == NULL || + node_b->ptrs[m].ptr == NULL || + node_a->ptrs[n].ptr == + node_b->ptrs[m].ptr) + continue; + + intersect_type = acl_intersect_type( + &node_a->ptrs[n].values, + &node_b->ptrs[m].values, + &intersect_ptr); + + /* If this node is not a 'match' node */ + if ((intersect_type & ACL_INTERSECT) && + (context->cfg.num_categories != 1 || + !(node_a->ptrs[n].ptr->match_flag))) { + + /* + * next merge is a 'move' pointer, + * if this one is and B is a + * subset of the intersection. + */ + next_move = move && + (intersect_type & + ACL_INTERSECT_B) == 0; + + if (a_subset && b_full) { + rc = acl_merge(context, + node_a->ptrs[n].ptr, + node_b->ptrs[m].ptr, + next_move, + 1, level + 1); + if (rc != 0) + return (rc); + } else { + rc = acl_merge_intersect( + context, node_a, n, + node_b, m, next_move, + level, &intersect_ptr); + if (rc != 0) + return (rc); + } + } + } + } + } + + /* Compact pointers */ + node_a->min_add = min_add_a; + acl_compact_node_ptrs(node_a); + node_b->min_add = min_add_b; + acl_compact_node_ptrs(node_b); + + /* + * Either COPY or MOVE pointers from B to A + */ + acl_intersect(&node_a->values, &node_b->values, &intersect_values); + + if (move && node_b->ref_count == 1) { + for (m = 0; m < node_b->num_ptrs; m++) { + if (node_b->ptrs[m].ptr != NULL && + acl_move_ptr(context, node_a, node_b, m, + &intersect_values) < 0) + return (-1); + } + } else { + for (m = 0; m < node_b->num_ptrs; m++) { + if (node_b->ptrs[m].ptr != NULL && + acl_copy_ptr(context, node_a, node_b, m, + &intersect_values) < 0) + return (-1); + } + } + + /* + * Free node if its empty (no longer used) + */ + if (acl_empty(node_b)) { + acl_free_node(context, node_b); + } + return (0); +} + +static int +acl_resolve_leaf(struct acl_build_context *context, + struct rte_acl_node *node_a, + struct rte_acl_node *node_b, + struct rte_acl_node **node_c) +{ + uint32_t n; + int combined_priority = ACL_PRIORITY_EQUAL; + + for (n = 0; n < context->cfg.num_categories; n++) { + if (node_a->mrt->priority[n] != node_b->mrt->priority[n]) { + combined_priority |= (node_a->mrt->priority[n] > + node_b->mrt->priority[n]) ? + ACL_PRIORITY_NODE_A : ACL_PRIORITY_NODE_B; + } + } + + /* + * if node a is higher or equal priority for all categories, + * then return node_a. + */ + if (combined_priority == ACL_PRIORITY_NODE_A || + combined_priority == ACL_PRIORITY_EQUAL) { + *node_c = node_a; + return 0; + } + + /* + * if node b is higher or equal priority for all categories, + * then return node_b. + */ + if (combined_priority == ACL_PRIORITY_NODE_B) { + *node_c = node_b; + return 0; + } + + /* + * mixed priorities - create a new node with the highest priority + * for each category. + */ + + /* force new duplication. */ + node_a->next = NULL; + + *node_c = acl_dup_node(context, node_a); + for (n = 0; n < context->cfg.num_categories; n++) { + if ((*node_c)->mrt->priority[n] < node_b->mrt->priority[n]) { + (*node_c)->mrt->priority[n] = node_b->mrt->priority[n]; + (*node_c)->mrt->results[n] = node_b->mrt->results[n]; + } + } + return 0; +} + +/* +* Within the existing trie structure, determine which nodes are +* part of the subtree of the trie to be merged. +* +* For these purposes, a subtree is defined as the set of nodes that +* are 1) not a superset of the intersection with the same level of +* the merging tree, and 2) do not have any references from a node +* outside of the subtree. +*/ +static void +mark_subtree(struct rte_acl_node *node, + struct rte_acl_bitset *level_bits, + uint32_t level, + uint32_t id) +{ + uint32_t n; + + /* mark this node as part of the subtree */ + node->subtree_id = id | RTE_ACL_SUBTREE_NODE; + + for (n = 0; n < node->num_ptrs; n++) { + + if (node->ptrs[n].ptr != NULL) { + + struct rte_acl_bitset intersect_bits; + int intersect; + + /* + * Item 1) : + * check if this child pointer is not a superset of the + * same level of the merging tree. + */ + intersect = acl_intersect_type(&node->ptrs[n].values, + &level_bits[level], + &intersect_bits); + + if ((intersect & ACL_INTERSECT_A) == 0) { + + struct rte_acl_node *child = node->ptrs[n].ptr; + + /* + * reset subtree reference if this is + * the first visit by this subtree. + */ + if (child->subtree_id != id) { + child->subtree_id = id; + child->subtree_ref_count = 0; + } + + /* + * Item 2) : + * increment the subtree reference count and if + * all references are from this subtree then + * recurse to that child + */ + child->subtree_ref_count++; + if (child->subtree_ref_count == + child->ref_count) + mark_subtree(child, level_bits, + level + 1, id); + } + } + } +} + +/* + * Build the set of bits that define the set of transitions + * for each level of a trie. + */ +static void +build_subset_mask(struct rte_acl_node *node, + struct rte_acl_bitset *level_bits, + int level) +{ + uint32_t n; + + /* Add this node's transitions to the set for this level */ + for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) + level_bits[level].bits[n] &= node->values.bits[n]; + + /* For each child, add the transitions for the next level */ + for (n = 0; n < node->num_ptrs; n++) + if (node->ptrs[n].ptr != NULL) + build_subset_mask(node->ptrs[n].ptr, level_bits, + level + 1); +} + + +/* + * Merge nodes A and B together, + * returns a node that is the path for the intersection + * + * If match node (leaf on trie) + * For each category + * return node = highest priority result + * + * Create C as a duplicate of A to point to child intersections + * If any pointers in C intersect with any in B + * For each intersection + * merge children + * remove intersection from C pointer + * add a pointer from C to child intersection node + * Compact the pointers in A and B + * Copy any B pointers that are outside of the intersection to C + * If C has no references to the B trie + * free C and return A + * Else If C has no references to the A trie + * free C and return B + * Else + * return C + */ +static int +acl_merge_trie(struct acl_build_context *context, + struct rte_acl_node *node_a, struct rte_acl_node *node_b, + uint32_t level, uint32_t subtree_id, struct rte_acl_node **return_c) +{ + uint32_t n, m, ptrs_c, ptrs_b; + uint32_t min_add_c, min_add_b; + int node_intersect_type; + struct rte_acl_bitset node_intersect; + struct rte_acl_node *node_c; + struct rte_acl_node *node_a_next; + int node_b_refs; + int node_a_refs; + + node_c = node_a; + node_a_next = node_a->next; + min_add_c = 0; + min_add_b = 0; + node_a_refs = node_a->num_ptrs; + node_b_refs = 0; + node_intersect_type = 0; + + /* Resolve leaf nodes (matches) */ + if (node_a->match_flag != 0) { + acl_resolve_leaf(context, node_a, node_b, return_c); + return 0; + } + + /* + * Create node C as a copy of node A if node A is not part of + * a subtree of the merging tree (node B side). Otherwise, + * just use node A. + */ + if (level > 0 && + node_a->subtree_id != + (subtree_id | RTE_ACL_SUBTREE_NODE)) { + node_c = acl_dup_node(context, node_a); + node_c->subtree_id = subtree_id | RTE_ACL_SUBTREE_NODE; + } + + /* + * If the two node transitions intersect then merge the transitions. + * Check intersection for entire node (all pointers) + */ + node_intersect_type = acl_intersect_type(&node_c->values, + &node_b->values, + &node_intersect); + + if (node_intersect_type & ACL_INTERSECT) { + + min_add_b = node_b->min_add; + node_b->min_add = node_b->num_ptrs; + ptrs_b = node_b->num_ptrs; + + min_add_c = node_c->min_add; + node_c->min_add = node_c->num_ptrs; + ptrs_c = node_c->num_ptrs; + + for (n = 0; n < ptrs_c; n++) { + if (node_c->ptrs[n].ptr == NULL) { + node_a_refs--; + continue; + } + node_c->ptrs[n].ptr->next = NULL; + for (m = 0; m < ptrs_b; m++) { + + struct rte_acl_bitset child_intersect; + int child_intersect_type; + struct rte_acl_node *child_node_c = NULL; + + if (node_b->ptrs[m].ptr == NULL || + node_c->ptrs[n].ptr == + node_b->ptrs[m].ptr) + continue; + + child_intersect_type = acl_intersect_type( + &node_c->ptrs[n].values, + &node_b->ptrs[m].values, + &child_intersect); + + if ((child_intersect_type & ACL_INTERSECT) != + 0) { + if (acl_merge_trie(context, + node_c->ptrs[n].ptr, + node_b->ptrs[m].ptr, + level + 1, subtree_id, + &child_node_c)) + return 1; + + if (child_node_c != NULL && + child_node_c != + node_c->ptrs[n].ptr) { + + node_b_refs++; + + /* + * Added link from C to + * child_C for all transitions + * in the intersection. + */ + acl_add_ptr(context, node_c, + child_node_c, + &child_intersect); + + /* + * inc refs if pointer is not + * to node b. + */ + node_a_refs += (child_node_c != + node_b->ptrs[m].ptr); + + /* + * Remove intersection from C + * pointer. + */ + if (!acl_exclude( + &node_c->ptrs[n].values, + &node_c->ptrs[n].values, + &child_intersect)) { + acl_deref_ptr(context, + node_c, n); + node_c->ptrs[n].ptr = + NULL; + node_a_refs--; + } + } + } + } + } + + /* Compact pointers */ + node_c->min_add = min_add_c; + acl_compact_node_ptrs(node_c); + node_b->min_add = min_add_b; + acl_compact_node_ptrs(node_b); + } + + /* + * Copy pointers outside of the intersection from B to C + */ + if ((node_intersect_type & ACL_INTERSECT_B) != 0) { + node_b_refs++; + for (m = 0; m < node_b->num_ptrs; m++) + if (node_b->ptrs[m].ptr != NULL) + acl_copy_ptr(context, node_c, + node_b, m, &node_intersect); + } + + /* + * Free node C if top of trie is contained in A or B + * if node C is a duplicate of node A && + * node C was not an existing duplicate + */ + if (node_c != node_a && node_c != node_a_next) { + + /* + * if the intersection has no references to the + * B side, then it is contained in A + */ + if (node_b_refs == 0) { + acl_free_node(context, node_c); + node_c = node_a; + } else { + /* + * if the intersection has no references to the + * A side, then it is contained in B. + */ + if (node_a_refs == 0) { + acl_free_node(context, node_c); + node_c = node_b; + } + } + } + + if (return_c != NULL) + *return_c = node_c; + + if (level == 0) + acl_free_node(context, node_b); + + return 0; +} + +/* + * Reset current runtime fields before next build: + * - free allocated RT memory. + * - reset all RT related fields to zero. + */ +static void +acl_build_reset(struct rte_acl_ctx *ctx) +{ + rte_free(ctx->mem); + memset(&ctx->num_categories, 0, + sizeof(*ctx) - offsetof(struct rte_acl_ctx, num_categories)); +} + +static void +acl_gen_range(struct acl_build_context *context, + const uint8_t *hi, const uint8_t *lo, int size, int level, + struct rte_acl_node *root, struct rte_acl_node *end) +{ + struct rte_acl_node *node, *prev; + uint32_t n; + + prev = root; + for (n = size - 1; n > 0; n--) { + node = acl_alloc_node(context, level++); + acl_add_ptr_range(context, prev, node, lo[n], hi[n]); + prev = node; + } + acl_add_ptr_range(context, prev, end, lo[0], hi[0]); +} + +static struct rte_acl_node * +acl_gen_range_trie(struct acl_build_context *context, + const void *min, const void *max, + int size, int level, struct rte_acl_node **pend) +{ + int32_t n; + struct rte_acl_node *root; + const uint8_t *lo = (const uint8_t *)min; + const uint8_t *hi = (const uint8_t *)max; + + *pend = acl_alloc_node(context, level+size); + root = acl_alloc_node(context, level++); + + if (lo[size - 1] == hi[size - 1]) { + acl_gen_range(context, hi, lo, size, level, root, *pend); + } else { + uint8_t limit_lo[64]; + uint8_t limit_hi[64]; + uint8_t hi_ff = UINT8_MAX; + uint8_t lo_00 = 0; + + memset(limit_lo, 0, RTE_DIM(limit_lo)); + memset(limit_hi, UINT8_MAX, RTE_DIM(limit_hi)); + + for (n = size - 2; n >= 0; n--) { + hi_ff = (uint8_t)(hi_ff & hi[n]); + lo_00 = (uint8_t)(lo_00 | lo[n]); + } + + if (hi_ff != UINT8_MAX) { + limit_lo[size - 1] = hi[size - 1]; + acl_gen_range(context, hi, limit_lo, size, level, + root, *pend); + } + + if (lo_00 != 0) { + limit_hi[size - 1] = lo[size - 1]; + acl_gen_range(context, limit_hi, lo, size, level, + root, *pend); + } + + if (hi[size - 1] - lo[size - 1] > 1 || + lo_00 == 0 || + hi_ff == UINT8_MAX) { + limit_lo[size-1] = (uint8_t)(lo[size-1] + (lo_00 != 0)); + limit_hi[size-1] = (uint8_t)(hi[size-1] - + (hi_ff != UINT8_MAX)); + acl_gen_range(context, limit_hi, limit_lo, size, + level, root, *pend); + } + } + return (root); +} + +static struct rte_acl_node * +acl_gen_mask_trie(struct acl_build_context *context, + const void *value, const void *mask, + int size, int level, struct rte_acl_node **pend) +{ + int32_t n; + struct rte_acl_node *root; + struct rte_acl_node *node, *prev; + struct rte_acl_bitset bits; + const uint8_t *val = (const uint8_t *)value; + const uint8_t *msk = (const uint8_t *)mask; + + root = acl_alloc_node(context, level++); + prev = root; + + for (n = size - 1; n >= 0; n--) { + node = acl_alloc_node(context, level++); + acl_gen_mask(&bits, val[n] & msk[n], msk[n]); + acl_add_ptr(context, prev, node, &bits); + prev = node; + } + + *pend = prev; + return (root); +} + +static struct rte_acl_node * +build_trie(struct acl_build_context *context, struct rte_acl_build_rule *head, + struct rte_acl_build_rule **last, uint32_t *count) +{ + uint32_t n, m; + int field_index, node_count; + struct rte_acl_node *trie; + struct rte_acl_build_rule *prev, *rule; + struct rte_acl_node *end, *merge, *root, *end_prev; + const struct rte_acl_field *fld; + struct rte_acl_bitset level_bits[RTE_ACL_MAX_LEVELS]; + + prev = head; + rule = head; + + if ((trie = acl_alloc_node(context, 0)) == NULL) + return (NULL); + + while (rule != NULL) { + + if ((root = acl_alloc_node(context, 0)) == NULL) + return (NULL); + + root->ref_count = 1; + end = root; + + for (n = 0; n < rule->config->num_fields; n++) { + + field_index = rule->config->defs[n].field_index; + fld = rule->f->field + field_index; + end_prev = end; + + /* build a mini-trie for this field */ + switch (rule->config->defs[n].type) { + + case RTE_ACL_FIELD_TYPE_BITMASK: + merge = acl_gen_mask_trie(context, + &fld->value, + &fld->mask_range, + rule->config->defs[n].size, + end->level + 1, + &end); + break; + + case RTE_ACL_FIELD_TYPE_MASK: + { + /* + * set msb for the size of the field and + * all higher bits. + */ + uint64_t mask; + + if (fld->mask_range.u32 == 0) { + mask = 0; + + /* + * arithmetic right shift for the length of + * the mask less the msb. + */ + } else { + mask = -1 << + (rule->config->defs[n].size * + CHAR_BIT - fld->mask_range.u32); + } + + /* gen a mini-trie for this field */ + merge = acl_gen_mask_trie(context, + &fld->value, + (char *)&mask, + rule->config->defs[n].size, + end->level + 1, + &end); + } + break; + + case RTE_ACL_FIELD_TYPE_RANGE: + merge = acl_gen_range_trie(context, + &rule->f->field[field_index].value, + &rule->f->field[field_index].mask_range, + rule->config->defs[n].size, + end->level + 1, + &end); + break; + + default: + RTE_LOG(ERR, ACL, + "Error in rule[%u] type - %hhu\n", + rule->f->data.userdata, + rule->config->defs[n].type); + return (NULL); + } + + /* merge this field on to the end of the rule */ + if (acl_merge_trie(context, end_prev, merge, 0, + 0, NULL) != 0) { + return (NULL); + } + } + + end->match_flag = ++context->num_build_rules; + + /* + * Setup the results for this rule. + * The result and priority of each category. + */ + if (end->mrt == NULL && + (end->mrt = acl_build_alloc(context, 1, + sizeof(*end->mrt))) == NULL) + return (NULL); + + for (m = 0; m < context->cfg.num_categories; m++) { + if (rule->f->data.category_mask & (1 << m)) { + end->mrt->results[m] = rule->f->data.userdata; + end->mrt->priority[m] = rule->f->data.priority; + } else { + end->mrt->results[m] = 0; + end->mrt->priority[m] = 0; + } + } + + node_count = context->num_nodes; + + memset(&level_bits[0], UINT8_MAX, sizeof(level_bits)); + build_subset_mask(root, &level_bits[0], 0); + mark_subtree(trie, &level_bits[0], 0, end->match_flag); + (*count)++; + + /* merge this rule into the trie */ + if (acl_merge_trie(context, trie, root, 0, end->match_flag, + NULL)) + return NULL; + + node_count = context->num_nodes - node_count; + if (node_count > NODE_MAX) { + *last = prev; + return trie; + } + + prev = rule; + rule = rule->next; + } + + *last = NULL; + return trie; +} + +static int +acl_calc_wildness(struct rte_acl_build_rule *head, + const struct rte_acl_config *config) +{ + uint32_t n; + struct rte_acl_build_rule *rule; + + for (rule = head; rule != NULL; rule = rule->next) { + + for (n = 0; n < config->num_fields; n++) { + + double wild = 0; + double size = CHAR_BIT * config->defs[n].size; + int field_index = config->defs[n].field_index; + const struct rte_acl_field *fld = rule->f->field + + field_index; + + switch (rule->config->defs[n].type) { + case RTE_ACL_FIELD_TYPE_BITMASK: + wild = (size - + _mm_popcnt_u32(fld->mask_range.u8)) / + size; + break; + + case RTE_ACL_FIELD_TYPE_MASK: + wild = (size - fld->mask_range.u32) / size; + break; + + case RTE_ACL_FIELD_TYPE_RANGE: + switch (rule->config->defs[n].size) { + case sizeof(uint8_t): + wild = ((double)fld->mask_range.u8 - + fld->value.u8) / UINT8_MAX; + break; + case sizeof(uint16_t): + wild = ((double)fld->mask_range.u16 - + fld->value.u16) / UINT16_MAX; + break; + case sizeof(uint32_t): + wild = ((double)fld->mask_range.u32 - + fld->value.u32) / UINT32_MAX; + break; + case sizeof(uint64_t): + wild = ((double)fld->mask_range.u64 - + fld->value.u64) / UINT64_MAX; + break; + default: + RTE_LOG(ERR, ACL, + "%s(rule: %u) invalid %u-th " + "field, type: %hhu, " + "unknown size: %hhu\n", + __func__, + rule->f->data.userdata, + n, + rule->config->defs[n].type, + rule->config->defs[n].size); + return (-EINVAL); + } + break; + + default: + RTE_LOG(ERR, ACL, + "%s(rule: %u) invalid %u-th " + "field, unknown type: %hhu\n", + __func__, + rule->f->data.userdata, + n, + rule->config->defs[n].type); + return (-EINVAL); + + } + + rule->wildness[field_index] = (uint32_t)(wild * 100); + } + } + + return (0); +} + +static int +acl_rule_stats(struct rte_acl_build_rule *head, struct rte_acl_config *config, + uint32_t *wild_limit) +{ + int min; + struct rte_acl_build_rule *rule; + uint32_t n, m, fields_deactivated = 0; + uint32_t start = 0, deactivate = 0; + int tally[RTE_ACL_MAX_LEVELS][TALLY_NUM]; + + memset(tally, 0, sizeof(tally)); + + for (rule = head; rule != NULL; rule = rule->next) { + + for (n = 0; n < config->num_fields; n++) { + uint32_t field_index = config->defs[n].field_index; + + tally[n][TALLY_0]++; + for (m = 1; m < RTE_DIM(wild_limits); m++) { + if (rule->wildness[field_index] >= + wild_limits[m]) + tally[n][m]++; + } + } + + for (n = config->num_fields - 1; n > 0; n--) { + uint32_t field_index = config->defs[n].field_index; + + if (rule->wildness[field_index] == 100) + tally[n][TALLY_DEPTH]++; + else + break; + } + } + + /* + * Look for any field that is always wild and drop it from the config + * Only deactivate if all fields for a given input loop are deactivated. + */ + for (n = 1; n < config->num_fields; n++) { + if (config->defs[n].input_index != + config->defs[n - 1].input_index) { + for (m = start; m < n; m++) + tally[m][TALLY_DEACTIVATED] = deactivate; + fields_deactivated += deactivate; + start = n; + deactivate = 1; + } + + /* if the field is not always completely wild */ + if (tally[n][TALLY_100] != tally[n][TALLY_0]) + deactivate = 0; + } + + for (m = start; m < n; m++) + tally[m][TALLY_DEACTIVATED] = deactivate; + + fields_deactivated += deactivate; + + /* remove deactivated fields */ + if (fields_deactivated) { + uint32_t k, l = 0; + + for (k = 0; k < config->num_fields; k++) { + if (tally[k][TALLY_DEACTIVATED] == 0) { + memcpy(&tally[l][0], &tally[k][0], + TALLY_NUM * sizeof(tally[0][0])); + memcpy(&config->defs[l++], + &config->defs[k], + sizeof(struct rte_acl_field_def)); + } + } + config->num_fields = l; + } + + min = RTE_ACL_SINGLE_TRIE_SIZE; + if (config->num_fields == 2) + min *= 4; + else if (config->num_fields == 3) + min *= 3; + else if (config->num_fields == 4) + min *= 2; + + if (tally[0][TALLY_0] < min) + return 0; + for (n = 0; n < config->num_fields; n++) + wild_limit[n] = 0; + + /* + * If trailing fields are 100% wild, group those together. + * This allows the search length of the trie to be shortened. + */ + for (n = 1; n < config->num_fields; n++) { + + double rule_percentage = (double)tally[n][TALLY_DEPTH] / + tally[n][0]; + + if (rule_percentage > RULE_PERCENTAGE) { + /* if it crosses an input boundary then round up */ + while (config->defs[n - 1].input_index == + config->defs[n].input_index) + n++; + + /* set the limit for selecting rules */ + while (n < config->num_fields) + wild_limit[n++] = 100; + + if (wild_limit[n - 1] == 100) + return 1; + } + } + + /* look for the most wild that's 40% or more of the rules */ + for (n = 1; n < config->num_fields; n++) { + for (m = TALLY_100; m > 0; m--) { + + double rule_percentage = (double)tally[n][m] / + tally[n][0]; + + if (tally[n][TALLY_DEACTIVATED] == 0 && + tally[n][TALLY_0] > + RTE_ACL_SINGLE_TRIE_SIZE && + rule_percentage > NODE_PERCENTAGE && + rule_percentage < 0.80) { + wild_limit[n] = wild_limits[m]; + return 1; + } + } + } + return 0; +} + +static int +order(struct rte_acl_build_rule **insert, struct rte_acl_build_rule *rule) +{ + uint32_t n; + struct rte_acl_build_rule *left = *insert; + + if (left == NULL) + return (0); + + for (n = 1; n < left->config->num_fields; n++) { + int field_index = left->config->defs[n].field_index; + + if (left->wildness[field_index] != rule->wildness[field_index]) + return (left->wildness[field_index] >= + rule->wildness[field_index]); + } + return (0); +} + +static struct rte_acl_build_rule * +ordered_insert_rule(struct rte_acl_build_rule *head, + struct rte_acl_build_rule *rule) +{ + struct rte_acl_build_rule **insert; + + if (rule == NULL) + return head; + + rule->next = head; + if (head == NULL) + return rule; + + insert = &head; + while (order(insert, rule)) { + insert = &(*insert)->next; + } + + rule->next = *insert; + *insert = rule; + return (head); +} + +static struct rte_acl_build_rule * +sort_rules(struct rte_acl_build_rule *head) +{ + struct rte_acl_build_rule *rule, *reordered_head = NULL; + struct rte_acl_build_rule *last_rule = NULL; + + for (rule = head; rule != NULL; rule = rule->next) { + reordered_head = ordered_insert_rule(reordered_head, last_rule); + last_rule = rule; + } + + if (last_rule != reordered_head) { + reordered_head = ordered_insert_rule(reordered_head, last_rule); + } + + return reordered_head; +} + +static uint32_t +acl_build_index(const struct rte_acl_config *config, uint32_t *data_index) +{ + uint32_t n, m; + int32_t last_header; + + m = 0; + last_header = -1; + + for (n = 0; n < config->num_fields; n++) { + if (last_header != config->defs[n].input_index) { + last_header = config->defs[n].input_index; + data_index[m++] = config->defs[n].offset; + } + } + + return (m); +} + +static int +acl_build_tries(struct acl_build_context *context, + struct rte_acl_build_rule *head) +{ + int32_t rc; + uint32_t n, m, num_tries; + struct rte_acl_config *config; + struct rte_acl_build_rule *last, *rule; + uint32_t wild_limit[RTE_ACL_MAX_LEVELS]; + struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES]; + + config = head->config; + rule = head; + rule_sets[0] = head; + num_tries = 1; + + /* initialize tries */ + for (n = 0; n < RTE_DIM(context->tries); n++) { + context->tries[n].type = RTE_ACL_UNUSED_TRIE; + context->bld_tries[n].trie = NULL; + context->tries[n].count = 0; + context->tries[n].smallest = INT32_MAX; + } + + context->tries[0].type = RTE_ACL_FULL_TRIE; + + /* calc wildness of each field of each rule */ + if ((rc = acl_calc_wildness(head, config)) != 0) + return (rc); + + n = acl_rule_stats(head, config, &wild_limit[0]); + + /* put all rules that fit the wildness criteria into a seperate trie */ + while (n > 0 && num_tries < RTE_ACL_MAX_TRIES) { + + struct rte_acl_config *new_config; + struct rte_acl_build_rule **prev = &rule_sets[num_tries - 1]; + struct rte_acl_build_rule *next = head->next; + + if ((new_config = acl_build_alloc(context, 1, + sizeof(*new_config))) == NULL) { + RTE_LOG(ERR, ACL, + "Failed to geti space for new config\n"); + return (-ENOMEM); + } + + memcpy(new_config, config, sizeof(*new_config)); + config = new_config; + rule_sets[num_tries] = NULL; + + for (rule = head; rule != NULL; rule = next) { + + int move = 1; + + next = rule->next; + for (m = 0; m < config->num_fields; m++) { + int x = config->defs[m].field_index; + if (rule->wildness[x] < wild_limit[m]) { + move = 0; + break; + } + } + + if (move) { + rule->config = new_config; + rule->next = rule_sets[num_tries]; + rule_sets[num_tries] = rule; + *prev = next; + } else + prev = &rule->next; + } + + head = rule_sets[num_tries]; + n = acl_rule_stats(rule_sets[num_tries], config, + &wild_limit[0]); + num_tries++; + } + + if (n > 0) + RTE_LOG(DEBUG, ACL, + "Number of tries(%d) exceeded.\n", RTE_ACL_MAX_TRIES); + + for (n = 0; n < num_tries; n++) { + + rule_sets[n] = sort_rules(rule_sets[n]); + context->tries[n].type = RTE_ACL_FULL_TRIE; + context->tries[n].count = 0; + context->tries[n].num_data_indexes = + acl_build_index(rule_sets[n]->config, + context->data_indexes[n]); + context->tries[n].data_index = context->data_indexes[n]; + + if ((context->bld_tries[n].trie = + build_trie(context, rule_sets[n], + &last, &context->tries[n].count)) == NULL) { + RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n); + return (-ENOMEM); + } + + + if (last != NULL) { + rule_sets[num_tries++] = last->next; + last->next = NULL; + acl_free_node(context, context->bld_tries[n].trie); + context->tries[n].count = 0; + + if ((context->bld_tries[n].trie = + build_trie(context, + rule_sets[n], &last, + &context->tries[n].count)) == NULL) { + RTE_LOG(ERR, ACL, + "Build of %u-th trie failed\n", n); + return (-ENOMEM); + } + } + } + + context->num_tries = num_tries; + return (0); +} + +static void +acl_build_log(const struct acl_build_context *ctx) +{ + uint32_t n; + + RTE_LOG(DEBUG, ACL, "Build phase for ACL \"%s\":\n" + "memory consumed: %zu\n", + ctx->acx->name, + ctx->pool.alloc); + + for (n = 0; n < RTE_DIM(ctx->tries); n++) { + if (ctx->tries[n].count != 0) + RTE_LOG(DEBUG, ACL, + "trie %u: number of rules: %u\n", + n, ctx->tries[n].count); + } +} + +static int +acl_build_rules(struct acl_build_context *bcx) +{ + struct rte_acl_build_rule *br, *head; + const struct rte_acl_rule *rule; + uint32_t *wp; + uint32_t fn, i, n, num; + size_t ofs, sz; + + fn = bcx->cfg.num_fields; + n = bcx->acx->num_rules; + ofs = n * sizeof(*br); + sz = ofs + n * fn * sizeof(*wp); + + if ((br = tb_alloc(&bcx->pool, sz)) == NULL) { + RTE_LOG(ERR, ACL, "ACL conext %s: failed to create a copy " + "of %u build rules (%zu bytes)\n", + bcx->acx->name, n, sz); + return (-ENOMEM); + } + + wp = (uint32_t *)((uintptr_t)br + ofs); + num = 0; + head = NULL; + + for (i = 0; i != n; i++) { + rule = (const struct rte_acl_rule *) + ((uintptr_t)bcx->acx->rules + bcx->acx->rule_sz * i); + if ((rule->data.category_mask & bcx->category_mask) != 0) { + br[num].next = head; + br[num].config = &bcx->cfg; + br[num].f = rule; + br[num].wildness = wp; + wp += fn; + head = br + num; + num++; + } + } + + bcx->num_rules = num; + bcx->build_rules = head; + + return (0); +} + +/* + * Copy data_indexes for each trie into RT location. + */ +static void +acl_set_data_indexes(struct rte_acl_ctx *ctx) +{ + uint32_t i, n, ofs; + + ofs = 0; + for (i = 0; i != ctx->num_tries; i++) { + n = ctx->trie[i].num_data_indexes; + memcpy(ctx->data_indexes + ofs, ctx->trie[i].data_index, + n * sizeof(ctx->data_indexes[0])); + ctx->trie[i].data_index = ctx->data_indexes + ofs; + ofs += n; + } +} + + +int +rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg) +{ + int rc; + struct acl_build_context bcx; + + if (ctx == NULL || cfg == NULL || cfg->num_categories == 0 || + cfg->num_categories > RTE_ACL_MAX_CATEGORIES) + return -(EINVAL); + + acl_build_reset(ctx); + + memset(&bcx, 0, sizeof(bcx)); + bcx.acx = ctx; + bcx.pool.alignment = ACL_POOL_ALIGN; + bcx.pool.min_alloc = ACL_POOL_ALLOC_MIN; + bcx.cfg = *cfg; + bcx.category_mask = LEN2MASK(bcx.cfg.num_categories); + + + /* Create a buid rules copy. */ + if ((rc = acl_build_rules(&bcx)) != 0) + return (rc); + + /* No rules to build for that context+config */ + if (bcx.build_rules == NULL) { + rc = -EINVAL; + + /* build internal trie representation. */ + } else if ((rc = acl_build_tries(&bcx, bcx.build_rules)) == 0) { + + /* allocate and fill run-time structures. */ + if ((rc = rte_acl_gen(ctx, bcx.tries, bcx.bld_tries, + bcx.num_tries, bcx.cfg.num_categories, + RTE_ACL_IPV4VLAN_NUM * RTE_DIM(bcx.tries), + bcx.num_build_rules)) == 0) { + + /* set data indexes. */ + acl_set_data_indexes(ctx); + + /* copy in build config. */ + ctx->config = *cfg; + } + } + + acl_build_log(&bcx); + + /* cleanup after build. */ + tb_free_pool(&bcx.pool); + return (rc); +} diff --git a/lib/librte_acl/acl_gen.c b/lib/librte_acl/acl_gen.c new file mode 100644 index 0000000..4b4862c --- /dev/null +++ b/lib/librte_acl/acl_gen.c @@ -0,0 +1,473 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include +#include "acl_vect.h" +#include "acl.h" + +#define QRANGE_MIN ((uint8_t)INT8_MIN) + +#define RTE_ACL_VERIFY(exp) do { \ + if (!(exp)) \ + rte_panic("line %d\tassert \"" #exp "\" failed\n", __LINE__); \ +} while (0) + +struct acl_node_counters { + int match; + int match_used; + int single; + int quad; + int quad_vectors; + int dfa; + int smallest_match; +}; + +struct rte_acl_indices { + int dfa_index; + int quad_index; + int single_index; + int match_index; +}; + +static void +acl_gen_log_stats(const struct rte_acl_ctx *ctx, + const struct acl_node_counters *counts) +{ + RTE_LOG(DEBUG, ACL, "Gen phase for ACL \"%s\":\n" + "runtime memory footprint on socket %d:\n" + "single nodes/bytes used: %d/%zu\n" + "quad nodes/bytes used: %d/%zu\n" + "DFA nodes/bytes used: %d/%zu\n" + "match nodes/bytes used: %d/%zu\n" + "total: %zu bytes\n", + ctx->name, ctx->socket_id, + counts->single, counts->single * sizeof(uint64_t), + counts->quad, counts->quad_vectors * sizeof(uint64_t), + counts->dfa, counts->dfa * RTE_ACL_DFA_SIZE * sizeof(uint64_t), + counts->match, + counts->match * sizeof(struct rte_acl_match_results), + ctx->mem_sz); +} + +/* +* Counts the number of groups of sequential bits that are +* either 0 or 1, as specified by the zero_one parameter. This is used to +* calculate the number of ranges in a node to see if it fits in a quad range +* node. +*/ +static int +acl_count_sequential_groups(struct rte_acl_bitset *bits, int zero_one) +{ + int n, ranges, last_bit; + + ranges = 0; + last_bit = zero_one ^ 1; + + for (n = QRANGE_MIN; n < UINT8_MAX + 1; n++) { + if (bits->bits[n / (sizeof(bits_t) * 8)] & + (1 << (n % (sizeof(bits_t) * 8)))) { + if (zero_one == 1 && last_bit != 1) + ranges++; + last_bit = 1; + } else { + if (zero_one == 0 && last_bit != 0) + ranges++; + last_bit = 0; + } + } + for (n = 0; n < QRANGE_MIN; n++) { + if (bits->bits[n / (sizeof(bits_t) * 8)] & + (1 << (n % (sizeof(bits_t) * 8)))) { + if (zero_one == 1 && last_bit != 1) + ranges++; + last_bit = 1; + } else { + if (zero_one == 0 && last_bit != 0) + ranges++; + last_bit = 0; + } + } + + return (ranges); +} + +/* + * Count number of ranges spanned by the node's pointers + */ +static int +acl_count_fanout(struct rte_acl_node *node) +{ + uint32_t n; + int ranges; + + if (node->fanout != 0) + return (node->fanout); + + ranges = acl_count_sequential_groups(&node->values, 0); + + for (n = 0; n < node->num_ptrs; n++) { + if (node->ptrs[n].ptr != NULL) + ranges += acl_count_sequential_groups( + &node->ptrs[n].values, 1); + } + + node->fanout = ranges; + return (node->fanout); +} + +/* + * Determine the type of nodes and count each type + */ +static int +acl_count_trie_types(struct acl_node_counters *counts, + struct rte_acl_node *node, int match, int force_dfa) +{ + uint32_t n; + int num_ptrs; + + /* skip if this node has been counted */ + if (node->node_type != (uint32_t)RTE_ACL_NODE_UNDEFINED) + return (match); + + if (node->match_flag != 0 || node->num_ptrs == 0) { + counts->match++; + if (node->match_flag == -1) + node->match_flag = match++; + node->node_type = RTE_ACL_NODE_MATCH; + if (counts->smallest_match > node->match_flag) + counts->smallest_match = node->match_flag; + return match; + } + + num_ptrs = acl_count_fanout(node); + + /* Force type to dfa */ + if (force_dfa) + num_ptrs = RTE_ACL_DFA_SIZE; + + /* determine node type based on number of ranges */ + if (num_ptrs == 1) { + counts->single++; + node->node_type = RTE_ACL_NODE_SINGLE; + } else if (num_ptrs <= RTE_ACL_QUAD_MAX) { + counts->quad++; + counts->quad_vectors += node->fanout; + node->node_type = RTE_ACL_NODE_QRANGE; + } else { + counts->dfa++; + node->node_type = RTE_ACL_NODE_DFA; + } + + /* + * recursively count the types of all children + */ + for (n = 0; n < node->num_ptrs; n++) { + if (node->ptrs[n].ptr != NULL) + match = acl_count_trie_types(counts, node->ptrs[n].ptr, + match, 0); + } + + return (match); +} + +static void +acl_add_ptrs(struct rte_acl_node *node, uint64_t *node_array, uint64_t no_match, + int resolved) +{ + uint32_t n, x; + int m, ranges, last_bit; + struct rte_acl_node *child; + struct rte_acl_bitset *bits; + uint64_t *node_a, index, dfa[RTE_ACL_DFA_SIZE]; + + ranges = 0; + last_bit = 0; + + for (n = 0; n < RTE_DIM(dfa); n++) + dfa[n] = no_match; + + for (x = 0; x < node->num_ptrs; x++) { + + if ((child = node->ptrs[x].ptr) == NULL) + continue; + + bits = &node->ptrs[x].values; + for (n = 0; n < RTE_DIM(dfa); n++) { + + if (bits->bits[n / (sizeof(bits_t) * CHAR_BIT)] & + (1 << (n % (sizeof(bits_t) * CHAR_BIT)))) { + + dfa[n] = resolved ? child->node_index : x; + ranges += (last_bit == 0); + last_bit = 1; + } else { + last_bit = 0; + } + } + } + + /* + * Rather than going from 0 to 256, the range count and + * the layout are from 80-ff then 0-7f due to signed compare + * for SSE (cmpgt). + */ + if (node->node_type == RTE_ACL_NODE_QRANGE) { + + m = 0; + node_a = node_array; + index = dfa[QRANGE_MIN]; + *node_a++ = index; + + for (x = QRANGE_MIN + 1; x < UINT8_MAX + 1; x++) { + if (dfa[x] != index) { + index = dfa[x]; + *node_a++ = index; + node->transitions[m++] = (uint8_t)(x - 1); + } + } + + for (x = 0; x < INT8_MAX + 1; x++) { + if (dfa[x] != index) { + index = dfa[x]; + *node_a++ = index; + node->transitions[m++] = (uint8_t)(x - 1); + } + } + + /* fill unused locations with max value - nothing is greater */ + for (; m < RTE_ACL_QUAD_SIZE; m++) + node->transitions[m] = INT8_MAX; + + RTE_ACL_VERIFY(m <= RTE_ACL_QUAD_SIZE); + + } else if (node->node_type == RTE_ACL_NODE_DFA && resolved) { + for (n = 0; n < RTE_DIM(dfa); n++) + node_array[n] = dfa[n]; + } +} + +/* + * Routine that allocates space for this node and recursively calls + * to allocate space for each child. Once all the children are allocated, + * then resolve all transitions for this node. + */ +static void +acl_gen_node(struct rte_acl_node *node, uint64_t *node_array, + uint64_t no_match, struct rte_acl_indices *index, int num_categories) +{ + uint32_t n, *qtrp; + uint64_t *array_ptr; + struct rte_acl_match_results *match; + + if (node->node_index != RTE_ACL_NODE_UNDEFINED) + return; + + array_ptr = NULL; + + switch (node->node_type) { + case RTE_ACL_NODE_DFA: + node->node_index = index->dfa_index | node->node_type; + array_ptr = &node_array[index->dfa_index]; + index->dfa_index += RTE_ACL_DFA_SIZE; + for (n = 0; n < RTE_ACL_DFA_SIZE; n++) + array_ptr[n] = no_match; + break; + case RTE_ACL_NODE_SINGLE: + node->node_index = RTE_ACL_QUAD_SINGLE | index->single_index | + node->node_type; + array_ptr = &node_array[index->single_index]; + index->single_index += 1; + array_ptr[0] = no_match; + break; + case RTE_ACL_NODE_QRANGE: + array_ptr = &node_array[index->quad_index]; + acl_add_ptrs(node, array_ptr, no_match, 0); + qtrp = (uint32_t *)node->transitions; + node->node_index = qtrp[0]; + node->node_index <<= sizeof(index->quad_index) * CHAR_BIT; + node->node_index |= index->quad_index | node->node_type; + index->quad_index += node->fanout; + break; + case RTE_ACL_NODE_MATCH: + match = ((struct rte_acl_match_results *) + (node_array + index->match_index)); + memcpy(match + node->match_flag, node->mrt, sizeof(*node->mrt)); + node->node_index = node->match_flag | node->node_type; + break; + case RTE_ACL_NODE_UNDEFINED: + RTE_ACL_VERIFY(node->node_type != + (uint32_t)RTE_ACL_NODE_UNDEFINED); + break; + } + + /* recursively allocate space for all children */ + for (n = 0; n < node->num_ptrs; n++) { + if (node->ptrs[n].ptr != NULL) + acl_gen_node(node->ptrs[n].ptr, + node_array, + no_match, + index, + num_categories); + } + + /* All children are resolved, resolve this node's pointers */ + switch (node->node_type) { + case RTE_ACL_NODE_DFA: + acl_add_ptrs(node, array_ptr, no_match, 1); + break; + case RTE_ACL_NODE_SINGLE: + for (n = 0; n < node->num_ptrs; n++) { + if (node->ptrs[n].ptr != NULL) + array_ptr[0] = node->ptrs[n].ptr->node_index; + } + break; + case RTE_ACL_NODE_QRANGE: + acl_add_ptrs(node, array_ptr, no_match, 1); + break; + case RTE_ACL_NODE_MATCH: + break; + case RTE_ACL_NODE_UNDEFINED: + RTE_ACL_VERIFY(node->node_type != + (uint32_t)RTE_ACL_NODE_UNDEFINED); + break; + } +} + +static int +acl_calc_counts_indicies(struct acl_node_counters *counts, + struct rte_acl_indices *indices, struct rte_acl_trie *trie, + struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries, + int match_num) +{ + uint32_t n; + + memset(indices, 0, sizeof(*indices)); + memset(counts, 0, sizeof(*counts)); + + /* Get stats on nodes */ + for (n = 0; n < num_tries; n++) { + counts->smallest_match = INT32_MAX; + match_num = acl_count_trie_types(counts, node_bld_trie[n].trie, + match_num, 1); + trie[n].smallest = counts->smallest_match; + } + + indices->dfa_index = RTE_ACL_DFA_SIZE + 1; + indices->quad_index = indices->dfa_index + + counts->dfa * RTE_ACL_DFA_SIZE; + indices->single_index = indices->quad_index + counts->quad_vectors; + indices->match_index = indices->single_index + counts->single + 1; + indices->match_index = RTE_ALIGN(indices->match_index, + (XMM_SIZE / sizeof(uint64_t))); + + return (match_num); +} + +/* + * Generate the runtime structure using build structure + */ +int +rte_acl_gen(struct rte_acl_ctx *ctx, struct rte_acl_trie *trie, + struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries, + uint32_t num_categories, uint32_t data_index_sz, int match_num) +{ + void *mem; + size_t total_size; + uint64_t *node_array, no_match; + uint32_t n, match_index; + struct rte_acl_match_results *match; + struct acl_node_counters counts; + struct rte_acl_indices indices; + + /* Fill counts and indicies arrays from the nodes. */ + match_num = acl_calc_counts_indicies(&counts, &indices, trie, + node_bld_trie, num_tries, match_num); + + /* Allocate runtime memory (align to cache boundary) */ + total_size = RTE_ALIGN(data_index_sz, CACHE_LINE_SIZE) + + indices.match_index * sizeof(uint64_t) + + (match_num + 2) * sizeof(struct rte_acl_match_results) + + XMM_SIZE; + + if ((mem = rte_zmalloc_socket(ctx->name, total_size, CACHE_LINE_SIZE, + ctx->socket_id)) == NULL) { + RTE_LOG(ERR, ACL, + "allocation of %zu bytes on socket %d for %s failed\n", + total_size, ctx->socket_id, ctx->name); + return (-ENOMEM); + } + + /* Fill the runtime structure */ + match_index = indices.match_index; + node_array = (uint64_t *)((uintptr_t)mem + + RTE_ALIGN(data_index_sz, CACHE_LINE_SIZE)); + + /* + * Setup the NOMATCH node (a SINGLE at the + * highest index, that points to itself) + */ + + node_array[RTE_ACL_DFA_SIZE] = RTE_ACL_DFA_SIZE | RTE_ACL_NODE_SINGLE; + no_match = RTE_ACL_NODE_MATCH; + + for (n = 0; n < RTE_ACL_DFA_SIZE; n++) + node_array[n] = no_match; + + match = ((struct rte_acl_match_results *)(node_array + match_index)); + memset(match, 0, sizeof(*match)); + + for (n = 0; n < num_tries; n++) { + + acl_gen_node(node_bld_trie[n].trie, node_array, no_match, + &indices, num_categories); + + if (node_bld_trie[n].trie->node_index == no_match) + trie[n].root_index = 0; + else + trie[n].root_index = node_bld_trie[n].trie->node_index; + } + + ctx->mem = mem; + ctx->mem_sz = total_size; + ctx->data_indexes = mem; + ctx->num_tries = num_tries; + ctx->num_categories = num_categories; + ctx->match_index = match_index; + ctx->no_match = no_match; + ctx->idle = node_array[RTE_ACL_DFA_SIZE]; + ctx->trans_table = node_array; + memcpy(ctx->trie, trie, sizeof(ctx->trie)); + + acl_gen_log_stats(ctx, &counts); + return (0); +} diff --git a/lib/librte_acl/acl_run.c b/lib/librte_acl/acl_run.c new file mode 100644 index 0000000..d08d7ea --- /dev/null +++ b/lib/librte_acl/acl_run.c @@ -0,0 +1,927 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include +#include "acl_vect.h" +#include "acl.h" + +#define MAX_SEARCHES_SSE8 8 +#define MAX_SEARCHES_SSE4 4 +#define MAX_SEARCHES_SSE2 2 +#define MAX_SEARCHES_SCALAR 2 + +#define GET_NEXT_4BYTES(prm, idx) \ + (*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++))) + + +#define RTE_ACL_NODE_INDEX ((uint32_t)~RTE_ACL_NODE_TYPE) + +#define SCALAR_QRANGE_MULT 0x01010101 +#define SCALAR_QRANGE_MASK 0x7f7f7f7f +#define SCALAR_QRANGE_MIN 0x80808080 + +enum { + SHUFFLE32_SLOT1 = 0xe5, + SHUFFLE32_SLOT2 = 0xe6, + SHUFFLE32_SLOT3 = 0xe7, + SHUFFLE32_SWAP64 = 0x4e, +}; + +/* + * Structure to manage N parallel trie traversals. + * The runtime trie traversal routines can process 8, 4, or 2 tries + * in parallel. Each packet may require multiple trie traversals (up to 4). + * This structure is used to fill the slots (0 to n-1) for parallel processing + * with the trie traversals needed for each packet. + */ +struct acl_flow_data { + uint32_t num_packets; + /* number of packets processed */ + uint32_t started; + /* number of trie traversals in progress */ + uint32_t trie; + /* current trie index (0 to N-1) */ + uint32_t cmplt_size; + uint32_t total_packets; + uint32_t categories; + /* number of result categories per packet. */ + /* maximum number of packets to process */ + const uint64_t *trans; + const uint8_t **data; + uint32_t *results; + struct completion *last_cmplt; + struct completion *cmplt_array; +}; + +/* + * Structure to maintain running results for + * a single packet (up to 4 tries). + */ +struct completion { + uint32_t *results; /* running results. */ + int32_t priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */ + uint32_t count; /* num of remaining tries */ + /* true for allocated struct */ +} __attribute__((aligned(XMM_SIZE))); + +/* + * One parms structure for each slot in the search engine. + */ +struct parms { + const uint8_t *data; + /* input data for this packet */ + const uint32_t *data_index; + /* data indirection for this trie */ + struct completion *cmplt; + /* completion data for this packet */ +}; + +/* + * Define an global idle node for unused engine slots + */ +static const uint32_t idle[UINT8_MAX + 1]; + +static const rte_xmm_t mm_type_quad_range = { + .u32 = { + RTE_ACL_NODE_QRANGE, + RTE_ACL_NODE_QRANGE, + RTE_ACL_NODE_QRANGE, + RTE_ACL_NODE_QRANGE, + }, +}; + +static const rte_xmm_t mm_type_quad_range64 = { + .u32 = { + RTE_ACL_NODE_QRANGE, + RTE_ACL_NODE_QRANGE, + 0, + 0, + }, +}; + +static const rte_xmm_t mm_shuffle_input = { + .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}, +}; + +static const rte_xmm_t mm_shuffle_input64 = { + .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080}, +}; + +static const rte_xmm_t mm_ones_16 = { + .u16 = {1, 1, 1, 1, 1, 1, 1, 1}, +}; + +static const rte_xmm_t mm_bytes = { + .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX}, +}; + +static const rte_xmm_t mm_bytes64 = { + .u32 = {UINT8_MAX, UINT8_MAX, 0, 0}, +}; + +static const rte_xmm_t mm_match_mask = { + .u32 = { + RTE_ACL_NODE_MATCH, + RTE_ACL_NODE_MATCH, + RTE_ACL_NODE_MATCH, + RTE_ACL_NODE_MATCH, + }, +}; + +static const rte_xmm_t mm_match_mask64 = { + .u32 = { + RTE_ACL_NODE_MATCH, + 0, + RTE_ACL_NODE_MATCH, + 0, + }, +}; + +static const rte_xmm_t mm_index_mask = { + .u32 = { + RTE_ACL_NODE_INDEX, + RTE_ACL_NODE_INDEX, + RTE_ACL_NODE_INDEX, + RTE_ACL_NODE_INDEX, + }, +}; + +static const rte_xmm_t mm_index_mask64 = { + .u32 = { + RTE_ACL_NODE_INDEX, + RTE_ACL_NODE_INDEX, + 0, + 0, + }, +}; + +/* + * Allocate a completion structure to manage the tries for a packet. + */ +static inline struct completion * +alloc_completion(struct completion *p, uint32_t size, uint32_t tries, + uint32_t *results) +{ + uint32_t n; + + for (n = 0; n < size; n++) { + + if (p[n].count == 0) { + + /* mark as allocated and set number of tries. */ + p[n].count = tries; + p[n].results = results; + return &(p[n]); + } + } + + /* should never get here */ + return (NULL); +} + +/* + * Resolve priority for a single result trie. + */ +static inline void +resolve_single_priority(uint64_t transition, int n, + const struct rte_acl_ctx *ctx, struct parms *parms, + const struct rte_acl_match_results *p) +{ + if (parms[n].cmplt->count == ctx->num_tries || + parms[n].cmplt->priority[0] <= + p[transition].priority[0]) { + + parms[n].cmplt->priority[0] = p[transition].priority[0]; + parms[n].cmplt->results[0] = p[transition].results[0]; + } + + parms[n].cmplt->count--; +} + +/* + * Resolve priority for multiple results. This consists comparing + * the priority of the current traversal with the running set of + * results for the packet. For each result, keep a running array of + * the result (rule number) and its priority for each category. + */ +static inline void +resolve_priority(uint64_t transition, int n, const struct rte_acl_ctx *ctx, + struct parms *parms, const struct rte_acl_match_results *p, + uint32_t categories) +{ + uint32_t x; + xmm_t results, priority, results1, priority1, selector; + xmm_t *saved_results, *saved_priority; + + for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) { + + saved_results = (xmm_t *)(&parms[n].cmplt->results[x]); + saved_priority = + (xmm_t *)(&parms[n].cmplt->priority[x]); + + /* get results and priorities for completed trie */ + results = MM_LOADU((const xmm_t *)&p[transition].results[x]); + priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]); + + /* if this is not the first completed trie */ + if (parms[n].cmplt->count != ctx->num_tries) { + + /* get running best results and their priorities */ + results1 = MM_LOADU(saved_results); + priority1 = MM_LOADU(saved_priority); + + /* select results that are highest priority */ + selector = MM_CMPGT32(priority1, priority); + results = MM_BLENDV8(results, results1, selector); + priority = MM_BLENDV8(priority, priority1, selector); + } + + /* save running best results and their priorities */ + MM_STOREU(saved_results, results); + MM_STOREU(saved_priority, priority); + } + + /* Count down completed tries for this search request */ + parms[n].cmplt->count--; +} + +/* + * Routine to fill a slot in the parallel trie traversal array (parms) from + * the list of packets (flows). + */ +static inline uint64_t +acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n, + const struct rte_acl_ctx *ctx) +{ + uint64_t transition; + + /* if there are any more packets to process */ + if (flows->num_packets < flows->total_packets) { + parms[n].data = flows->data[flows->num_packets]; + parms[n].data_index = ctx->trie[flows->trie].data_index; + + /* if this is the first trie for this packet */ + if (flows->trie == 0) { + flows->last_cmplt = alloc_completion(flows->cmplt_array, + flows->cmplt_size, ctx->num_tries, + flows->results + + flows->num_packets * flows->categories); + } + + /* set completion parameters and starting index for this slot */ + parms[n].cmplt = flows->last_cmplt; + transition = + flows->trans[parms[n].data[*parms[n].data_index++] + + ctx->trie[flows->trie].root_index]; + + /* + * if this is the last trie for this packet, + * then setup next packet. + */ + flows->trie++; + if (flows->trie >= ctx->num_tries) { + flows->trie = 0; + flows->num_packets++; + } + + /* keep track of number of active trie traversals */ + flows->started++; + + /* no more tries to process, set slot to an idle position */ + } else { + transition = ctx->idle; + parms[n].data = (const uint8_t *)idle; + parms[n].data_index = idle; + } + return transition; +} + +/* + * Detect matches. If a match node transition is found, then this trie + * traversal is complete and fill the slot with the next trie + * to be processed. + */ +static inline uint64_t +acl_match_check_transition(uint64_t transition, int slot, + const struct rte_acl_ctx *ctx, struct parms *parms, + struct acl_flow_data *flows) +{ + const struct rte_acl_match_results *p; + + p = (const struct rte_acl_match_results *) + (flows->trans + ctx->match_index); + + if (transition & RTE_ACL_NODE_MATCH) { + + /* Remove flags from index and decrement active traversals */ + transition &= RTE_ACL_NODE_INDEX; + flows->started--; + + /* Resolve priorities for this trie and running results */ + if (flows->categories == 1) + resolve_single_priority(transition, slot, ctx, + parms, p); + else + resolve_priority(transition, slot, ctx, parms, p, + flows->categories); + + /* Fill the slot with the next trie or idle trie */ + transition = acl_start_next_trie(flows, parms, slot, ctx); + + } else if (transition == ctx->idle) { + /* reset indirection table for idle slots */ + parms[slot].data_index = idle; + } + + return transition; +} + +/* + * Extract transitions from an XMM register and check for any matches + */ +static void +acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx, + struct parms *parms, struct acl_flow_data *flows) +{ + uint64_t transition1, transition2; + + /* extract transition from low 64 bits. */ + transition1 = MM_CVT64(*indicies); + + /* extract transition from high 64 bits. */ + *indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64); + transition2 = MM_CVT64(*indicies); + + transition1 = acl_match_check_transition(transition1, slot, ctx, + parms, flows); + transition2 = acl_match_check_transition(transition2, slot + 1, ctx, + parms, flows); + + /* update indicies with new transitions. */ + *indicies = MM_SET64(transition2, transition1); +} + +/* + * Check for a match in 2 transitions (contained in SSE register) + */ +static inline void +acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms, + struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask) +{ + xmm_t temp; + + temp = MM_AND(match_mask, *indicies); + if (!MM_TESTZ(temp, temp)) { + acl_process_matches(indicies, slot, ctx, parms, flows); + } +} + +/* + * Check for any match in 4 transitions (contained in 2 SSE registers) + */ +static inline void +acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms, + struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2, + xmm_t match_mask) +{ + xmm_t temp; + + /* put low 32 bits of each transition into one register */ + temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2, + 0x88); + + /* test for match node */ + temp = MM_AND(match_mask, temp); + if (!MM_TESTZ(temp, temp)) { + acl_process_matches(indicies1, slot, ctx, parms, flows); + acl_process_matches(indicies2, slot + 2, ctx, parms, flows); + } +} + +/* + * Calculate the address of the next transition for + * all types of nodes. Note that only DFA nodes and range + * nodes actually transition to another node. Match + * nodes don't move. + */ +static inline xmm_t +acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input, + xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range, + xmm_t *indicies1, xmm_t *indicies2) +{ + xmm_t addr, node_types, temp; + + /* + * Note that no transition is done for a match + * node and therefore a stream freezes when + * it reaches a match. + */ + + /* Shuffle low 32 into temp and high 32 into indicies2 */ + temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2, + 0x88); + *indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, + (__m128)*indicies2, 0xdd); + + /* Calc node type and node addr */ + node_types = MM_ANDNOT(index_mask, temp); + addr = MM_AND(index_mask, temp); + + /* + * Calc addr for DFAs - addr = dfa_index + input_byte + */ + + /* mask for DFA type (0) nodes */ + temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types)); + + /* add input byte to DFA position */ + temp = MM_AND(temp, bytes); + temp = MM_AND(temp, next_input); + addr = MM_ADD32(addr, temp); + + /* + * Calc addr for Range nodes -> range_index + range(input) + */ + node_types = MM_CMPEQ32(node_types, type_quad_range); + + /* + * Calculate number of range boundaries that are less than the + * input value. Range boundaries for each node are in signed 8 bit, + * ordered from -128 to 127 in the indicies2 register. + * This is effectively a popcnt of bytes that are greater than the + * input byte. + */ + + /* shuffle input byte to all 4 positions of 32 bit value */ + temp = MM_SHUFFLE8(next_input, shuffle_input); + + /* check ranges */ + temp = MM_CMPGT8(temp, *indicies2); + + /* convert -1 to 1 (bytes greater than input byte */ + temp = MM_SIGN8(temp, temp); + + /* horizontal add pairs of bytes into words */ + temp = MM_MADD8(temp, temp); + + /* horizontal add pairs of words into dwords */ + temp = MM_MADD16(temp, ones_16); + + /* mask to range type nodes */ + temp = MM_AND(temp, node_types); + + /* add index into node position */ + return (MM_ADD32(addr, temp)); +} + +/* + * Process 4 transitions (in 2 SIMD registers) in parallel + */ +static inline xmm_t +transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input, + xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range, + const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2) +{ + xmm_t addr; + uint64_t trans0, trans2; + + /* Calculate the address (array index) for all 4 transitions. */ + + addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16, + bytes, type_quad_range, indicies1, indicies2); + + /* Gather 64 bit transitions and pack back into 2 registers. */ + + trans0 = trans[MM_CVT32(addr)]; + + /* get slot 2 */ + + /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */ + addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2); + trans2 = trans[MM_CVT32(addr)]; + + /* get slot 1 */ + + /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */ + addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1); + *indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0); + + /* get slot 3 */ + + /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */ + addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3); + *indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2); + + return (MM_SRL32(next_input, 8)); +} + +static inline void +acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt, + uint32_t cmplt_size, const uint8_t **data, uint32_t *results, + uint32_t data_num, uint32_t categories, const uint64_t *trans) +{ + flows->num_packets = 0; + flows->started = 0; + flows->trie = 0; + flows->last_cmplt = NULL; + flows->cmplt_array = cmplt; + flows->total_packets = data_num; + flows->categories = categories; + flows->cmplt_size = cmplt_size; + flows->data = data; + flows->results = results; + flows->trans = trans; +} + +/* + * Execute trie traversal with 8 traversals in parallel + */ +static inline void +search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data, + uint32_t *results, uint32_t total_packets, uint32_t categories) +{ + int n; + struct acl_flow_data flows; + uint64_t index_array[MAX_SEARCHES_SSE8]; + struct completion cmplt[MAX_SEARCHES_SSE8]; + struct parms parms[MAX_SEARCHES_SSE8]; + xmm_t input0, input1; + xmm_t indicies1, indicies2, indicies3, indicies4; + + acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, + total_packets, categories, ctx->trans_table); + + for (n = 0; n < MAX_SEARCHES_SSE8; n++) { + cmplt[n].count = 0; + index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); + } + + /* + * indicies1 contains index_array[0,1] + * indicies2 contains index_array[2,3] + * indicies3 contains index_array[4,5] + * indicies4 contains index_array[6,7] + */ + + indicies1 = MM_LOADU((xmm_t *) &index_array[0]); + indicies2 = MM_LOADU((xmm_t *) &index_array[2]); + + indicies3 = MM_LOADU((xmm_t *) &index_array[4]); + indicies4 = MM_LOADU((xmm_t *) &index_array[6]); + + while (flows.started > 0) { + + /* Gather 4 bytes of input data for each stream. */ + input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), + 0); + input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4), + 0); + + input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1); + input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1); + + input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2); + input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2); + + input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3); + input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3); + + /* Process the 4 bytes of input on each stream. */ + + input0 = transition4(mm_index_mask.m, input0, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies1, &indicies2); + + input1 = transition4(mm_index_mask.m, input1, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies3, &indicies4); + + input0 = transition4(mm_index_mask.m, input0, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies1, &indicies2); + + input1 = transition4(mm_index_mask.m, input1, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies3, &indicies4); + + input0 = transition4(mm_index_mask.m, input0, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies1, &indicies2); + + input1 = transition4(mm_index_mask.m, input1, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies3, &indicies4); + + input0 = transition4(mm_index_mask.m, input0, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies1, &indicies2); + + input1 = transition4(mm_index_mask.m, input1, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies3, &indicies4); + + /* Check for any matches. */ + + acl_match_check_x4(0, ctx, parms, &flows, + &indicies1, &indicies2, mm_match_mask.m); + acl_match_check_x4(4, ctx, parms, &flows, + &indicies3, &indicies4, mm_match_mask.m); + } +} + +/* + * Execute trie traversal with 4 traversals in parallel + */ +static inline void +search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data, + uint32_t *results, int total_packets, uint32_t categories) +{ + int n; + struct acl_flow_data flows; + uint64_t index_array[MAX_SEARCHES_SSE4]; + struct completion cmplt[MAX_SEARCHES_SSE4]; + struct parms parms[MAX_SEARCHES_SSE4]; + xmm_t input, indicies1, indicies2; + + acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, + total_packets, categories, ctx->trans_table); + + for (n = 0; n < MAX_SEARCHES_SSE4; n++) { + cmplt[n].count = 0; + index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); + } + + indicies1 = MM_LOADU((xmm_t *) &index_array[0]); + indicies2 = MM_LOADU((xmm_t *) &index_array[2]); + + while (flows.started > 0) { + + /* Gather 4 bytes of input data for each stream. */ + input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0); + input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1); + input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2); + input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3); + + /* Process the 4 bytes of input on each stream. */ + input = transition4(mm_index_mask.m, input, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies1, &indicies2); + + input = transition4(mm_index_mask.m, input, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies1, &indicies2); + + input = transition4(mm_index_mask.m, input, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies1, &indicies2); + + input = transition4(mm_index_mask.m, input, + mm_shuffle_input.m, mm_ones_16.m, + mm_bytes.m, mm_type_quad_range.m, + flows.trans, &indicies1, &indicies2); + + /* Check for any matches. */ + + acl_match_check_x4(0, ctx, parms, &flows, + &indicies1, &indicies2, mm_match_mask.m); + } +} + +static inline xmm_t +transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input, + xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range, + const uint64_t *trans, xmm_t *indicies1) +{ + uint64_t t; + xmm_t addr, indicies2; + + indicies2 = MM_XOR(ones_16, ones_16); + + addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16, + bytes, type_quad_range, indicies1, &indicies2); + + /* Gather 64 bit transitions and pack 2 per register. */ + + t = trans[MM_CVT32(addr)]; + + /* get slot 1 */ + addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1); + *indicies1 = MM_SET64(trans[MM_CVT32(addr)], t); + + return (MM_SRL32(next_input, 8)); +} + +/* + * Execute trie traversal with 2 traversals in parallel. + */ +static inline void +search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data, + uint32_t *results, uint32_t total_packets, uint32_t categories) +{ + int n; + struct acl_flow_data flows; + uint64_t index_array[MAX_SEARCHES_SSE2]; + struct completion cmplt[MAX_SEARCHES_SSE2]; + struct parms parms[MAX_SEARCHES_SSE2]; + xmm_t input, indicies; + + acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, + total_packets, categories, ctx->trans_table); + + for (n = 0; n < MAX_SEARCHES_SSE2; n++) { + cmplt[n].count = 0; + index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); + } + + indicies = MM_LOADU((xmm_t *) &index_array[0]); + + while (flows.started > 0) { + + /* Gather 4 bytes of input data for each stream. */ + input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0); + input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1); + + /* Process the 4 bytes of input on each stream. */ + + input = transition2(mm_index_mask64.m, input, + mm_shuffle_input64.m, mm_ones_16.m, + mm_bytes64.m, mm_type_quad_range64.m, + flows.trans, &indicies); + + input = transition2(mm_index_mask64.m, input, + mm_shuffle_input64.m, mm_ones_16.m, + mm_bytes64.m, mm_type_quad_range64.m, + flows.trans, &indicies); + + input = transition2(mm_index_mask64.m, input, + mm_shuffle_input64.m, mm_ones_16.m, + mm_bytes64.m, mm_type_quad_range64.m, + flows.trans, &indicies); + + input = transition2(mm_index_mask64.m, input, + mm_shuffle_input64.m, mm_ones_16.m, + mm_bytes64.m, mm_type_quad_range64.m, + flows.trans, &indicies); + + /* Check for any matches. */ + acl_match_check_x2(0, ctx, parms, &flows, &indicies, + mm_match_mask64.m); + } +} + +/* + * When processing the transition, rather than using if/else + * construct, the offset is calculated for DFA and QRANGE and + * then conditionally added to the address based on node type. + * This is done to avoid branch mis-predictions. Since the + * offset is rather simple calculation it is more efficient + * to do the calculation and do a condition move rather than + * a conditional branch to determine which calculation to do. + */ +static inline uint32_t +scan_forward(uint32_t input, uint32_t max) +{ + return ((input == 0) ? max : rte_bsf32(input)); +} + +static inline uint64_t +scalar_transition(const uint64_t *trans_table, uint64_t transition, + uint8_t input) +{ + uint32_t addr, index, ranges, x, a, b, c; + + /* break transition into component parts */ + ranges = transition >> (sizeof(index) * CHAR_BIT); + + /* calc address for a QRANGE node */ + c = input * SCALAR_QRANGE_MULT; + a = ranges | SCALAR_QRANGE_MIN; + index = transition & ~RTE_ACL_NODE_INDEX; + a -= (c & SCALAR_QRANGE_MASK); + b = c & SCALAR_QRANGE_MIN; + addr = transition ^ index; + a &= SCALAR_QRANGE_MIN; + a ^= (ranges ^ b) & (a ^ b); + x = scan_forward(a, 32) >> 3; + addr += (index == RTE_ACL_NODE_DFA) ? input : x; + + /* pickup next transition */ + transition = *(trans_table + addr); + return (transition); +} + +int +rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data, + uint32_t *results, uint32_t num, uint32_t categories) +{ + int n; + uint64_t transition0, transition1; + uint32_t input0, input1; + struct acl_flow_data flows; + uint64_t index_array[MAX_SEARCHES_SCALAR]; + struct completion cmplt[MAX_SEARCHES_SCALAR]; + struct parms parms[MAX_SEARCHES_SCALAR]; + + if (categories != 1 && + ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0) + return (-EINVAL); + + acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num, + categories, ctx->trans_table); + + for (n = 0; n < MAX_SEARCHES_SCALAR; n++) { + cmplt[n].count = 0; + index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); + } + + transition0 = index_array[0]; + transition1 = index_array[1]; + + while (flows.started > 0) { + + input0 = GET_NEXT_4BYTES(parms, 0); + input1 = GET_NEXT_4BYTES(parms, 1); + + for (n = 0; n < 4; n++) { + if (likely((transition0 & RTE_ACL_NODE_MATCH) == 0)) + transition0 = scalar_transition(flows.trans, + transition0, (uint8_t)input0); + + input0 >>= CHAR_BIT; + + if (likely((transition1 & RTE_ACL_NODE_MATCH) == 0)) + transition1 = scalar_transition(flows.trans, + transition1, (uint8_t)input1); + + input1 >>= CHAR_BIT; + + } + if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) { + transition0 = acl_match_check_transition(transition0, + 0, ctx, parms, &flows); + transition1 = acl_match_check_transition(transition1, + 1, ctx, parms, &flows); + + } + } + return (0); +} + +int +rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data, + uint32_t *results, uint32_t num, uint32_t categories) +{ + if (categories != 1 && + ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0) + return (-EINVAL); + + if (likely(num >= MAX_SEARCHES_SSE8)) + search_sse_8(ctx, data, results, num, categories); + else if (num >= MAX_SEARCHES_SSE4) + search_sse_4(ctx, data, results, num, categories); + else + search_sse_2(ctx, data, results, num, categories); + + return (0); +} diff --git a/lib/librte_acl/acl_vect.h b/lib/librte_acl/acl_vect.h new file mode 100644 index 0000000..d08c45d --- /dev/null +++ b/lib/librte_acl/acl_vect.h @@ -0,0 +1,129 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _RTE_ACL_VECT_H_ +#define _RTE_ACL_VECT_H_ + +/** + * @file + * + * RTE ACL SSE/AVX related header. + */ + +#ifdef __cplusplus +extern "C" { +#endif + +#define MM_ADD16(a, b) _mm_add_epi16(a,b) +#define MM_ADD32(a, b) _mm_add_epi32(a, b) +#define MM_ALIGNR8(a, b, c) _mm_alignr_epi8(a, b, c) +#define MM_AND(a, b) _mm_and_si128(a, b) +#define MM_ANDNOT(a, b) _mm_andnot_si128(a, b) +#define MM_BLENDV8(a, b, c) _mm_blendv_epi8(a, b, c) +#define MM_CMPEQ16(a, b) _mm_cmpeq_epi16(a, b) +#define MM_CMPEQ32(a, b) _mm_cmpeq_epi32(a, b) +#define MM_CMPEQ8(a, b) _mm_cmpeq_epi8(a, b) +#define MM_CMPGT32(a, b) _mm_cmpgt_epi32(a, b) +#define MM_CMPGT8(a, b) _mm_cmpgt_epi8(a, b) +#define MM_CVT(a) _mm_cvtsi32_si128(a) +#define MM_CVT32(a) _mm_cvtsi128_si32(a) +#define MM_CVTU32(a) _mm_cvtsi32_si128(a) +#define MM_INSERT16(a, c, b) _mm_insert_epi16(a, c, b) +#define MM_INSERT32(a, c, b) _mm_insert_epi32(a, c, b) +#define MM_LOAD(a) _mm_load_si128(a) +#define MM_LOADH_PI(a, b) _mm_loadh_pi(a, b) +#define MM_LOADU(a) _mm_loadu_si128(a) +#define MM_MADD16(a, b) _mm_madd_epi16(a, b) +#define MM_MADD8(a, b) _mm_maddubs_epi16(a, b) +#define MM_MOVEMASK8(a) _mm_movemask_epi8(a) +#define MM_OR(a, b) _mm_or_si128(a, b) +#define MM_SET1_16(a) _mm_set1_epi16(a) +#define MM_SET1_32(a) _mm_set1_epi32(a) +#define MM_SET1_64(a) _mm_set1_epi64(a) +#define MM_SET1_8(a) _mm_set1_epi8(a) +#define MM_SET32(a,b,c,d) _mm_set_epi32(a,b,c,d) +#define MM_SHUFFLE32(a, b) _mm_shuffle_epi32(a, b) +#define MM_SHUFFLE8(a, b) _mm_shuffle_epi8(a, b) +#define MM_SHUFFLEPS(a, b, c) _mm_shuffle_ps(a, b, c) +#define MM_SIGN8(a, b) _mm_sign_epi8(a, b) +#define MM_SLL64(a, b) _mm_sll_epi64(a, b) +#define MM_SRL128(a, b) _mm_srli_si128(a, b) +#define MM_SRL16(a, b) _mm_srli_epi16(a, b) +#define MM_SRL32(a, b) _mm_srli_epi32(a, b) +#define MM_STORE(a, b) _mm_store_si128(a, b) +#define MM_STOREU(a, b) _mm_storeu_si128(a, b) +#define MM_TESTZ(a, b) _mm_testz_si128(a, b) +#define MM_XOR(a, b) _mm_xor_si128(a, b) + +#define MM_SET16(a,b,c,d, e, f, g, h) _mm_set_epi16(a,b,c,d, e, f, g, h) + +#define MM_SET8(c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,cA,cB,cC,cD,cE,cF) \ + _mm_set_epi8(c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,cA,cB,cC,cD,cE,cF) + +#ifdef RTE_ARCH_X86_64 + +#define MM_CVT64(a) _mm_cvtsi128_si64(a) + +#else + +#define MM_CVT64(a) ({ \ + rte_xmm_t m; \ + m.m = (a); \ + (m.u64[0]); \ +}) + +#endif /*RTE_ARCH_X86_64 */ + +/* + * Prior to version 12.1 icc doesn't support _mm_set_epi64x. + */ +#if (defined(__ICC) && __ICC < 1210) + +#define MM_SET64(a,b) ({ \ + rte_xmm_t m; \ + m.u64[0] = b; \ + m.u64[1] = a; \ + (m.m); \ +}) + +#else + +#define MM_SET64(a,b) _mm_set_epi64x(a,b) + +#endif /* (defined(__ICC) && __ICC < 1210) */ + +#ifdef __cplusplus +} +#endif + +#endif /* _RTE_ACL_VECT_H_ */ diff --git a/lib/librte_acl/rte_acl.c b/lib/librte_acl/rte_acl.c new file mode 100644 index 0000000..0efe117 --- /dev/null +++ b/lib/librte_acl/rte_acl.c @@ -0,0 +1,413 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include +#include "acl.h" + +#define BIT_SIZEOF(x) (sizeof(x) * CHAR_BIT) + +TAILQ_HEAD(rte_acl_list, rte_acl_ctx); + +struct rte_acl_ctx * +rte_acl_find_existing(const char *name) +{ + struct rte_acl_ctx *ctx; + struct rte_acl_list *acl_list; + + /* check that we have an initialised tail queue */ + if ((acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, + rte_acl_list)) == NULL) { + rte_errno = E_RTE_NO_TAILQ; + return NULL; + } + + rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK); + TAILQ_FOREACH(ctx, acl_list, next) { + if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0) + break; + } + rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK); + + if (ctx == NULL) + rte_errno = ENOENT; + return (ctx); +} + +void +rte_acl_free(struct rte_acl_ctx *ctx) +{ + if (ctx == NULL) + return; + + RTE_EAL_TAILQ_REMOVE(RTE_TAILQ_ACL, rte_acl_list, ctx); + + rte_free(ctx->mem); + rte_free(ctx); +} + +struct rte_acl_ctx * +rte_acl_create(const struct rte_acl_param *param) +{ + size_t sz; + struct rte_acl_ctx *ctx; + struct rte_acl_list *acl_list; + char name[sizeof (ctx->name)]; + + /* check that we have an initialised tail queue */ + if ((acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, + rte_acl_list)) == NULL) { + rte_errno = E_RTE_NO_TAILQ; + return NULL; + } + + /* check that input parameters are valid. */ + if (param == NULL || param->name == NULL) { + rte_errno = EINVAL; + return (NULL); + } + + rte_snprintf(name, sizeof(name), "ACL_%s", param->name); + + /* calculate amount of memory required for pattern set. */ + sz = sizeof (*ctx) + param->max_rule_num * param->rule_size; + + /* get EAL TAILQ lock. */ + rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); + + /* if we already have one with that name */ + TAILQ_FOREACH(ctx, acl_list, next) { + if (strncmp(param->name, ctx->name, sizeof (ctx->name)) == 0) + break; + } + + /* if ACL with such name doesn't exist, then create a new one. */ + if (ctx == NULL && (ctx = rte_zmalloc_socket(name, sz, CACHE_LINE_SIZE, + param->socket_id)) != NULL) { + + /* init new allocated context. */ + ctx->rules = ctx + 1; + ctx->max_rules = param->max_rule_num; + ctx->rule_sz = param->rule_size; + ctx->socket_id = param->socket_id; + rte_snprintf(ctx->name, sizeof(ctx->name), "%s", param->name); + + TAILQ_INSERT_TAIL(acl_list, ctx, next); + + } else if (ctx == NULL) { + RTE_LOG(ERR, ACL, + "allocation of %zu bytes on socket %d for %s failed\n", + sz, param->socket_id, name); + } + + rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); + return (ctx); +} + +static int +acl_add_rules(struct rte_acl_ctx *ctx, const void *rules, uint32_t num) +{ + uint8_t *pos; + + if (num + ctx->num_rules > ctx->max_rules) + return (-ENOMEM); + + pos = ctx->rules; + pos += ctx->rule_sz * ctx->num_rules; + memcpy(pos, rules, num * ctx->rule_sz); + ctx->num_rules += num; + + return (0); +} + +static int +acl_check_rule(const struct rte_acl_rule_data *rd) +{ + if ((rd->category_mask & LEN2MASK(RTE_ACL_MAX_CATEGORIES)) == 0 || + rd->priority > RTE_ACL_MAX_PRIORITY || + rd->priority < RTE_ACL_MIN_PRIORITY || + rd->userdata == RTE_ACL_INVALID_USERDATA) + return (-EINVAL); + return (0); +} + +int +rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules, + uint32_t num) +{ + const struct rte_acl_rule *rv; + uint32_t i; + int32_t rc; + + if (ctx == NULL || rules == NULL || 0 == ctx->rule_sz) + return (-EINVAL); + + for (i = 0; i != num; i++) { + rv = (const struct rte_acl_rule *) + ((uintptr_t)rules + i * ctx->rule_sz); + if ((rc = acl_check_rule(&rv->data)) != 0) { + RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n", + __func__, ctx->name, i + 1); + return (rc); + } + } + + return (acl_add_rules(ctx, rules, num)); +} + +/* + * Reset all rules. + * Note that RT structures are not affected. + */ +void +rte_acl_reset_rules(struct rte_acl_ctx *ctx) +{ + if (ctx != NULL) + ctx->num_rules = 0; +} + +/* + * Reset all rules and destroys RT structures. + */ +void +rte_acl_reset(struct rte_acl_ctx *ctx) +{ + if (ctx != NULL) { + rte_acl_reset_rules(ctx); + rte_acl_build(ctx, &ctx->config); + } +} + +/* + * Dump ACL context to the stdout. + */ +void +rte_acl_dump(const struct rte_acl_ctx *ctx) +{ + if (!ctx) + return; + printf("acl context <%s>@%p\n", ctx->name, ctx); + printf(" max_rules=%"PRIu32"\n", ctx->max_rules); + printf(" rule_size=%"PRIu32"\n", ctx->rule_sz); + printf(" num_rules=%"PRIu32"\n", ctx->num_rules); + printf(" num_categories=%"PRIu32"\n", ctx->num_categories); + printf(" num_tries=%"PRIu32"\n", ctx->num_tries); +} + +/* + * Dump all ACL contexts to the stdout. + */ +void +rte_acl_list_dump(void) +{ + struct rte_acl_ctx *ctx; + struct rte_acl_list *acl_list; + + /* check that we have an initialised tail queue */ + if ((acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, + rte_acl_list)) == NULL) { + rte_errno = E_RTE_NO_TAILQ; + return; + } + + rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK); + TAILQ_FOREACH(ctx, acl_list, next) { + rte_acl_dump(ctx); + } + rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK); +} + +/* + * Support for legacy ipv4vlan rules. + */ + +RTE_ACL_RULE_DEF(acl_ipv4vlan_rule, RTE_ACL_IPV4VLAN_NUM_FIELDS); + +static int +acl_ipv4vlan_check_rule(const struct rte_acl_ipv4vlan_rule *rule) +{ + if (rule->src_port_low > rule->src_port_high || + rule->dst_port_low > rule->dst_port_high || + rule->src_mask_len > BIT_SIZEOF(rule->src_addr) || + rule->dst_mask_len > BIT_SIZEOF(rule->dst_addr)) + return (-EINVAL); + + return (acl_check_rule(&rule->data)); +} + +static void +acl_ipv4vlan_convert_rule(const struct rte_acl_ipv4vlan_rule *ri, + struct acl_ipv4vlan_rule *ro) +{ + ro->data = ri->data; + + ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].value.u8 = ri->proto; + ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].value.u16 = ri->vlan; + ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].value.u16 = ri->domain; + ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].value.u32 = ri->src_addr; + ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].value.u32 = ri->dst_addr; + ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].value.u16 = ri->src_port_low; + ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].value.u16 = ri->dst_port_low; + + ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].mask_range.u8 = ri->proto_mask; + ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].mask_range.u16 = ri->vlan_mask; + ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].mask_range.u16 = + ri->domain_mask; + ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32 = + ri->src_mask_len; + ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32 = ri->dst_mask_len; + ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].mask_range.u16 = + ri->src_port_high; + ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].mask_range.u16 = + ri->dst_port_high; +} + +int +rte_acl_ipv4vlan_add_rules(struct rte_acl_ctx *ctx, + const struct rte_acl_ipv4vlan_rule *rules, + uint32_t num) +{ + int32_t rc; + uint32_t i; + struct acl_ipv4vlan_rule rv; + + if (ctx == NULL || rules == NULL || ctx->rule_sz != sizeof (rv)) + return (-EINVAL); + + /* check input rules. */ + for (i = 0; i != num; i++) { + if ((rc = acl_ipv4vlan_check_rule(rules + i)) != 0) { + RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n", + __func__, ctx->name, i + 1); + return (rc); + } + } + + if (num + ctx->num_rules > ctx->max_rules) + return (-ENOMEM); + + /* perform conversion to the internal format and add to the context. */ + for (i = 0, rc = 0; i != num && rc == 0; i++) { + acl_ipv4vlan_convert_rule(rules + i, &rv); + rc = acl_add_rules(ctx, &rv, 1); + } + + return (rc); +} + +static void +acl_ipv4vlan_config(struct rte_acl_config *cfg, + const uint32_t layout[RTE_ACL_IPV4VLAN_NUM], + uint32_t num_categories) +{ + static const struct rte_acl_field_def + ipv4_defs[RTE_ACL_IPV4VLAN_NUM_FIELDS] = { + { + .type = RTE_ACL_FIELD_TYPE_BITMASK, + .size = sizeof (uint8_t), + .field_index = RTE_ACL_IPV4VLAN_PROTO_FIELD, + .input_index = RTE_ACL_IPV4VLAN_PROTO, + }, + { + .type = RTE_ACL_FIELD_TYPE_BITMASK, + .size = sizeof (uint16_t), + .field_index = RTE_ACL_IPV4VLAN_VLAN1_FIELD, + .input_index = RTE_ACL_IPV4VLAN_VLAN, + }, + { + .type = RTE_ACL_FIELD_TYPE_BITMASK, + .size = sizeof (uint16_t), + .field_index = RTE_ACL_IPV4VLAN_VLAN2_FIELD, + .input_index = RTE_ACL_IPV4VLAN_VLAN, + }, + { + .type = RTE_ACL_FIELD_TYPE_MASK, + .size = sizeof (uint32_t), + .field_index = RTE_ACL_IPV4VLAN_SRC_FIELD, + .input_index = RTE_ACL_IPV4VLAN_SRC, + }, + { + .type = RTE_ACL_FIELD_TYPE_MASK, + .size = sizeof (uint32_t), + .field_index = RTE_ACL_IPV4VLAN_DST_FIELD, + .input_index = RTE_ACL_IPV4VLAN_DST, + }, + { + .type = RTE_ACL_FIELD_TYPE_RANGE, + .size = sizeof (uint16_t), + .field_index = RTE_ACL_IPV4VLAN_SRCP_FIELD, + .input_index = RTE_ACL_IPV4VLAN_PORTS, + }, + { + .type = RTE_ACL_FIELD_TYPE_RANGE, + .size = sizeof (uint16_t), + .field_index = RTE_ACL_IPV4VLAN_DSTP_FIELD, + .input_index = RTE_ACL_IPV4VLAN_PORTS, + }, + }; + + memcpy(&cfg->defs, ipv4_defs, sizeof(ipv4_defs)); + cfg->num_fields = RTE_DIM(ipv4_defs); + + cfg->defs[RTE_ACL_IPV4VLAN_PROTO_FIELD].offset = + layout[RTE_ACL_IPV4VLAN_PROTO]; + cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].offset = + layout[RTE_ACL_IPV4VLAN_VLAN]; + cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD].offset = + layout[RTE_ACL_IPV4VLAN_VLAN] + + cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].size; + cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].offset = + layout[RTE_ACL_IPV4VLAN_SRC]; + cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].offset = + layout[RTE_ACL_IPV4VLAN_DST]; + cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].offset = + layout[RTE_ACL_IPV4VLAN_PORTS]; + cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD].offset = + layout[RTE_ACL_IPV4VLAN_PORTS] + + cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].size; + + cfg->num_categories = num_categories; +} + +int +rte_acl_ipv4vlan_build(struct rte_acl_ctx *ctx, + const uint32_t layout[RTE_ACL_IPV4VLAN_NUM], + uint32_t num_categories) +{ + struct rte_acl_config cfg; + + if (ctx == NULL || layout == NULL) + return (-EINVAL); + + acl_ipv4vlan_config(&cfg, layout, num_categories); + return (rte_acl_build(ctx, &cfg)); +} diff --git a/lib/librte_acl/rte_acl.h b/lib/librte_acl/rte_acl.h new file mode 100644 index 0000000..afc0f69 --- /dev/null +++ b/lib/librte_acl/rte_acl.h @@ -0,0 +1,453 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _RTE_ACL_H_ +#define _RTE_ACL_H_ + +/** + * @file + * + * RTE Classifier. + */ + +#include + +#ifdef __cplusplus +extern "C" { +#endif + +#define RTE_ACL_MAX_CATEGORIES 16 + +#define RTE_ACL_RESULTS_MULTIPLIER (XMM_SIZE / sizeof(uint32_t)) + +#define RTE_ACL_MAX_LEVELS 64 +#define RTE_ACL_MAX_FIELDS 64 + +union rte_acl_field_types { + uint8_t u8; + uint16_t u16; + uint32_t u32; + uint64_t u64; +}; + +enum { + RTE_ACL_FIELD_TYPE_MASK = 0, + RTE_ACL_FIELD_TYPE_RANGE, + RTE_ACL_FIELD_TYPE_BITMASK +}; + +/** + * ACL Field defintion. + * Each field in the ACL rule has an associate definition. + * It defines the type of field, its size, its offset in the input buffer, + * the field index, and the input index. + * For performance reasons, the inner loop of the search function is unrolled + * to process four input bytes at a time. This requires the input to be grouped + * into sets of 4 consecutive bytes. The loop processes the first input byte as + * part of the setup and then subsequent bytes must be in groups of 4 + * consecutive bytes. + */ +struct rte_acl_field_def { + uint8_t type; /**< type - RTE_ACL_FIELD_TYPE_*. */ + uint8_t size; /**< size of field 1,2,4, or 8. */ + uint8_t field_index; /**< index of field inside the rule. */ + uint8_t input_index; /**< 0-N input index. */ + uint32_t offset; /**< offset to start of field. */ +}; + +/** + * ACL build configuration. + * Defines the fields of an ACL trie and number of categories to build with. + */ +struct rte_acl_config { + uint32_t num_categories; /**< Number of categories to build with. */ + uint32_t num_fields; /**< Number of field definitions. */ + struct rte_acl_field_def defs[RTE_ACL_MAX_FIELDS]; + /**< array of field definitions. */ +}; + +/** + * Defines the value of a field for a rule. + */ +struct rte_acl_field { + union rte_acl_field_types value; + /**< a 1,2,4, or 8 byte value of the field. */ + union rte_acl_field_types mask_range; + /**< + * depending on field type: + * mask -> 1.2.3.4/32 value=0x1020304, mask_range=32, + * range -> 0 : 65535 value=0, mask_range=65535, + * bitmask -> 0x06/0xff value=6, mask_range=0xff. + */ +}; + +enum { + RTE_ACL_TYPE_SHIFT = 29, + RTE_ACL_MAX_INDEX = LEN2MASK(RTE_ACL_TYPE_SHIFT), + RTE_ACL_MAX_PRIORITY = RTE_ACL_MAX_INDEX, + RTE_ACL_MIN_PRIORITY = 0, +}; + +#define RTE_ACL_INVALID_USERDATA 0 + +/** + * Miscellaneous data for ACL rule. + */ +struct rte_acl_rule_data { + uint32_t category_mask; /**< Mask of categories for that rule. */ + int32_t priority; /**< Priority for that rule. */ + uint32_t userdata; /**< Associated with the rule user data. */ +}; + +/** + * Defines single ACL rule. + * data - miscellaneous data for the rule. + * field[] - value and mask or range for each field. + */ +#define RTE_ACL_RULE_DEF(name, fld_num) struct name {\ + struct rte_acl_rule_data data; \ + struct rte_acl_field field[fld_num]; \ +} + +RTE_ACL_RULE_DEF(rte_acl_rule, 0); + +#define RTE_ACL_RULE_SZ(fld_num) \ + (sizeof(struct rte_acl_rule) + sizeof(struct rte_acl_field) * (fld_num)) + + +/** Max number of characters in name.*/ +#define RTE_ACL_NAMESIZE 32 + +/** + * Parameters used when creating the ACL context. + */ +struct rte_acl_param { + const char *name; /**< Name of the ACL context. */ + int socket_id; /**< Socket ID to allocate memory for. */ + uint32_t rule_size; /**< Size of each rule. */ + uint32_t max_rule_num; /**< Maximum number of rules. */ +}; + + +/** + * Create a new ACL context. + * + * @param param + * Parameters used to create and initialise the ACL context. + * @return + * Pointer to ACL context structure that is used in future ACL + * operations, or NULL on error, with error code set in rte_errno. + * Possible rte_errno errors include: + * - E_RTE_NO_TAILQ - no tailq list could be got for the ACL context list + * - EINVAL - invalid parameter passed to function + */ +struct rte_acl_ctx * +rte_acl_create(const struct rte_acl_param *param); + +/** + * Find an existing ACL context object and return a pointer to it. + * + * @param name + * Name of the ACL context as passed to rte_acl_create() + * @return + * Pointer to ACL context or NULL if object not found + * with rte_errno set appropriately. Possible rte_errno values include: + * - ENOENT - value not available for return + */ +struct rte_acl_ctx * +rte_acl_find_existing(const char *name); + +/** + * De-allocate all memory used by ACL context. + * + * @param ctx + * ACL context to free + */ +void +rte_acl_free(struct rte_acl_ctx *ctx); + +/** + * Add rules to an existing ACL context. + * This function is not multi-thread safe. + * + * @param ctx + * ACL context to add patterns to. + * @param rules + * Array of rules to add to the ACL context. + * Note that all fields in rte_acl_rule structures are expected + * to be in host byte order. + * Each rule expected to be in the same format and not exceed size + * specified at ACL context creation time. + * @param num + * Number of elements in the input array of rules. + * @return + * - -ENOMEM if there is no space in the ACL context for these rules. + * - -EINVAL if the parameters are invalid. + * - Zero if operation completed successfully. + */ +int +rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules, + uint32_t num); + +/** + * Delete all rules from the ACL context. + * This function is not multi-thread safe. + * Note that internal run-time structures are not affected. + * + * @param ctx + * ACL context to delete rules from. + */ +void +rte_acl_reset_rules(struct rte_acl_ctx *ctx); + +/** + * Analyze set of rules and build required internal run-time structures. + * This function is not multi-thread safe. + * + * @param ctx + * ACL context to build. + * @param cfg + * Pointer to struct rte_acl_config - defines build parameters. + * @return + * - -ENOMEM if couldn't allocate enough memory. + * - -EINVAL if the parameters are invalid. + * - Negative error code if operation failed. + * - Zero if operation completed successfully. + */ +int +rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg); + +/** + * Delete all rules from the ACL context and + * destroy all internal run-time structures. + * This function is not multi-thread safe. + * + * @param ctx + * ACL context to reset. + */ +void +rte_acl_reset(struct rte_acl_ctx *ctx); + +/** + * Search for a matching ACL rule for each input data buffer. + * Each input data buffer can have up to *categories* matches. + * That implies that results array should be big enough to hold + * (categories * num) elements. + * Also categories parameter should be either one or multiple of + * RTE_ACL_RESULTS_MULTIPLIER and can't be bigger than RTE_ACL_MAX_CATEGORIES. + * If more than one rule is applicable for given input buffer and + * given category, then rule with highest priority will be returned as a match. + * Note, that it is a caller responsibility to ensure that input parameters + * are valid and point to correct memory locations. + * + * @param ctx + * ACL context to search with. + * @param data + * Array of pointers to input data buffers to perform search. + * Note that all fields in input data buffers supposed to be in network + * byte order (MSB). + * @param results + * Array of search results, *categories* results per each input data buffer. + * @param num + * Number of elements in the input data buffers array. + * @param categories + * Number of maximum possible matches for each input buffer, one possible + * match per category. + * @return + * zero on successful completion. + * -EINVAL for incorrect arguments. + */ +int +rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data, + uint32_t *results, uint32_t num, uint32_t categories); + +/** + * Perform scalar search for a matching ACL rule for each input data buffer. + * Note, that while the search itself will avoid explicit use of SSE/AVX + * intrinsics, code for comparing matching results/priorities sill might use + * vector intrinsics (for categories > 1). + * Each input data buffer can have up to *categories* matches. + * That implies that results array should be big enough to hold + * (categories * num) elements. + * Also categories parameter should be either one or multiple of + * RTE_ACL_RESULTS_MULTIPLIER and can't be bigger than RTE_ACL_MAX_CATEGORIES. + * If more than one rule is applicable for given input buffer and + * given category, then rule with highest priority will be returned as a match. + * Note, that it is a caller's responsibility to ensure that input parameters + * are valid and point to correct memory locations. + * + * @param ctx + * ACL context to search with. + * @param data + * Array of pointers to input data buffers to perform search. + * Note that all fields in input data buffers supposed to be in network + * byte order (MSB). + * @param results + * Array of search results, *categories* results per each input data buffer. + * @param num + * Number of elements in the input data buffers array. + * @param categories + * Number of maximum possible matches for each input buffer, one possible + * match per category. + * @return + * zero on successful completion. + * -EINVAL for incorrect arguments. + */ +int +rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data, + uint32_t *results, uint32_t num, uint32_t categories); + +/** + * Dump an ACL context structure to the console. + * + * @param ctx + * ACL context to dump. + */ +void +rte_acl_dump(const struct rte_acl_ctx *ctx); + +/** + * Dump all ACL context structures to the console. + */ +void +rte_acl_list_dump(void); + +/** + * Legacy support for 7-tuple IPv4 and VLAN rule. + * This structure and corresponding API is deprecated. + */ +struct rte_acl_ipv4vlan_rule { + struct rte_acl_rule_data data; /**< Miscellaneous data for the rule. */ + uint8_t proto; /**< IPv4 protocol ID. */ + uint8_t proto_mask; /**< IPv4 protocol ID mask. */ + uint16_t vlan; /**< VLAN ID. */ + uint16_t vlan_mask; /**< VLAN ID mask. */ + uint16_t domain; /**< VLAN domain. */ + uint16_t domain_mask; /**< VLAN domain mask. */ + uint32_t src_addr; /**< IPv4 source address. */ + uint32_t src_mask_len; /**< IPv4 source address mask. */ + uint32_t dst_addr; /**< IPv4 destination address. */ + uint32_t dst_mask_len; /**< IPv4 destination address mask. */ + uint16_t src_port_low; /**< L4 source port low. */ + uint16_t src_port_high; /**< L4 source port high. */ + uint16_t dst_port_low; /**< L4 destination port low. */ + uint16_t dst_port_high; /**< L4 destination port high. */ +}; + +/** + * Specifies fields layout inside rte_acl_rule for rte_acl_ipv4vlan_rule. + */ +enum { + RTE_ACL_IPV4VLAN_PROTO_FIELD, + RTE_ACL_IPV4VLAN_VLAN1_FIELD, + RTE_ACL_IPV4VLAN_VLAN2_FIELD, + RTE_ACL_IPV4VLAN_SRC_FIELD, + RTE_ACL_IPV4VLAN_DST_FIELD, + RTE_ACL_IPV4VLAN_SRCP_FIELD, + RTE_ACL_IPV4VLAN_DSTP_FIELD, + RTE_ACL_IPV4VLAN_NUM_FIELDS +}; + +/** + * Macro to define rule size for rte_acl_ipv4vlan_rule. + */ +#define RTE_ACL_IPV4VLAN_RULE_SZ \ + RTE_ACL_RULE_SZ(RTE_ACL_IPV4VLAN_NUM_FIELDS) + +/* + * That effectively defines order of IPV4VLAN classifications: + * - PROTO + * - VLAN (TAG and DOMAIN) + * - SRC IP ADDRESS + * - DST IP ADDRESS + * - PORTS (SRC and DST) + */ +enum { + RTE_ACL_IPV4VLAN_PROTO, + RTE_ACL_IPV4VLAN_VLAN, + RTE_ACL_IPV4VLAN_SRC, + RTE_ACL_IPV4VLAN_DST, + RTE_ACL_IPV4VLAN_PORTS, + RTE_ACL_IPV4VLAN_NUM +}; + +/** + * Add ipv4vlan rules to an existing ACL context. + * This function is not multi-thread safe. + * + * @param ctx + * ACL context to add patterns to. + * @param rules + * Array of rules to add to the ACL context. + * Note that all fields in rte_acl_ipv4vlan_rule structures are expected + * to be in host byte order. + * @param num + * Number of elements in the input array of rules. + * @return + * - -ENOMEM if there is no space in the ACL context for these rules. + * - -EINVAL if the parameters are invalid. + * - Zero if operation completed successfully. + */ +int +rte_acl_ipv4vlan_add_rules(struct rte_acl_ctx *ctx, + const struct rte_acl_ipv4vlan_rule *rules, + uint32_t num); + +/** + * Analyze set of ipv4vlan rules and build required internal + * run-time structures. + * This function is not multi-thread safe. + * + * @param ctx + * ACL context to build. + * @param layout + * Layout of input data to search through. + * @param num_categories + * Maximum number of categories to use in that build. + * @return + * - -ENOMEM if couldn't allocate enough memory. + * - -EINVAL if the parameters are invalid. + * - Negative error code if operation failed. + * - Zero if operation completed successfully. + */ +int +rte_acl_ipv4vlan_build(struct rte_acl_ctx *ctx, + const uint32_t layout[RTE_ACL_IPV4VLAN_NUM], + uint32_t num_categories); + + +#ifdef __cplusplus +} +#endif + +#endif /* _RTE_ACL_H_ */ diff --git a/lib/librte_acl/rte_acl_osdep.h b/lib/librte_acl/rte_acl_osdep.h new file mode 100644 index 0000000..046b22d --- /dev/null +++ b/lib/librte_acl/rte_acl_osdep.h @@ -0,0 +1,92 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _RTE_ACL_OSDEP_H_ +#define _RTE_ACL_OSDEP_H_ + +/** + * @file + * + * RTE ACL DPDK/OS dependent file. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * Common defines. + */ + +#define LEN2MASK(ln) ((uint32_t)(((uint64_t)1 << (ln)) - 1)) + +#define DIM(x) RTE_DIM(x) + +/* + * To build ACL standalone. + */ +#ifdef RTE_LIBRTE_ACL_STANDALONE +#include +#else + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#endif /* RTE_LIBRTE_ACL_STANDALONE */ + +#endif /* _RTE_ACL_OSDEP_H_ */ diff --git a/lib/librte_acl/rte_acl_osdep_alone.h b/lib/librte_acl/rte_acl_osdep_alone.h new file mode 100644 index 0000000..16c0cea --- /dev/null +++ b/lib/librte_acl/rte_acl_osdep_alone.h @@ -0,0 +1,277 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _RTE_ACL_OSDEP_ALONE_H_ +#define _RTE_ACL_OSDEP_ALONE_H_ + +/** + * @file + * + * RTE ACL OS dependent file. + * An example how to build/use ACL library standalone + * (without rest of DPDK). + * Don't include that file on it's own, use . + */ + +#if (defined(__ICC) || (__GNUC__ == 4 && __GNUC_MINOR__ < 4)) + +#ifdef __SSE__ +#include +#endif + +#ifdef __SSE2__ +#include +#endif + +#if defined (__SSE4_2__) || defined (__SSE4_1__) +#include +#endif + +#else + +#include + +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#define DUMMY_MACRO do {} while (0) + +/* + * rte_common related. + */ +#define __rte_unused __attribute__((__unused__)) + +#define RTE_PTR_ADD(ptr, x) ((typeof(ptr))((uintptr_t)(ptr) + (x))) + +#define RTE_PTR_ALIGN_FLOOR(ptr, align) \ + (typeof(ptr))((uintptr_t)(ptr) & ~((uintptr_t)(align) - 1)) + +#define RTE_PTR_ALIGN_CEIL(ptr, align) \ + RTE_PTR_ALIGN_FLOOR(RTE_PTR_ADD(ptr, (align) - 1), align) + +#define RTE_PTR_ALIGN(ptr, align) RTE_PTR_ALIGN_CEIL(ptr, align) + +#define RTE_ALIGN_FLOOR(val, align) \ + (typeof(val))((val) & (~((typeof(val))((align) - 1)))) + +#define RTE_ALIGN_CEIL(val, align) \ + RTE_ALIGN_FLOOR(((val) + ((typeof(val))(align) - 1)), align) + +#define RTE_ALIGN(ptr, align) RTE_ALIGN_CEIL(ptr, align) + +#define RTE_MIN(a, b) ({ \ + typeof (a) _a = (a); \ + typeof (b) _b = (b); \ + _a < _b ? _a : _b; \ + }) + +#define RTE_DIM(a) (sizeof (a) / sizeof ((a)[0])) + +/** + * Searches the input parameter for the least significant set bit + * (starting from zero). + * If a least significant 1 bit is found, its bit index is returned. + * If the content of the input paramer is zero, then the content of the return + * value is undefined. + * @param v + * input parameter, should not be zero. + * @return + * least significant set bit in the input parameter. + */ +static inline uint32_t +rte_bsf32(uint32_t v) +{ + asm("bsf %1,%0" + : "=r" (v) + : "rm" (v)); + return (v); +} + +/* + * rte_common_vect related. + */ +typedef __m128i xmm_t; + +#define XMM_SIZE (sizeof (xmm_t)) +#define XMM_MASK (XMM_SIZE - 1) + +typedef union rte_mmsse { + xmm_t m; + uint8_t u8[XMM_SIZE / sizeof (uint8_t)]; + uint16_t u16[XMM_SIZE / sizeof (uint16_t)]; + uint32_t u32[XMM_SIZE / sizeof (uint32_t)]; + uint64_t u64[XMM_SIZE / sizeof (uint64_t)]; + double pd[XMM_SIZE / sizeof (double)]; +} rte_xmm_t; + +/* + * rte_cycles related. + */ +static inline uint64_t +rte_rdtsc(void) +{ + union { + uint64_t tsc_64; + struct { + uint32_t lo_32; + uint32_t hi_32; + }; + } tsc; + + asm volatile("rdtsc" : + "=a" (tsc.lo_32), + "=d" (tsc.hi_32)); + return tsc.tsc_64; +} + +/* + * rte_lcore related. + */ +#define rte_lcore_id() (0) + +/* + * rte_errno related. + */ +#define rte_errno errno +#define E_RTE_NO_TAILQ (-1) + +/* + * rte_rwlock related. + */ +#define rte_rwlock_read_lock(x) DUMMY_MACRO +#define rte_rwlock_read_unlock(x) DUMMY_MACRO +#define rte_rwlock_write_lock(x) DUMMY_MACRO +#define rte_rwlock_write_unlock(x) DUMMY_MACRO + +/* + * rte_memory related. + */ +#define SOCKET_ID_ANY -1 /**< Any NUMA socket. */ +#define CACHE_LINE_SIZE 64 /**< Cache line size. */ +#define CACHE_LINE_MASK (CACHE_LINE_SIZE-1) /**< Cache line mask. */ + +/** + * Force alignment to cache line. + */ +#define __rte_cache_aligned __attribute__((__aligned__(CACHE_LINE_SIZE))) + + +/* + * rte_byteorder related. + */ +#define rte_le_to_cpu_16(x) (x) +#define rte_le_to_cpu_32(x) (x) + +#define rte_cpu_to_be_16(x) \ + (((x) & UINT8_MAX) << CHAR_BIT | ((x) >> CHAR_BIT & UINT8_MAX)) +#define rte_cpu_to_be_32(x) __builtin_bswap32(x) + +/* + * rte_branch_prediction related. + */ +#ifndef likely +#define likely(x) __builtin_expect((x),1) +#endif /* likely */ + +#ifndef unlikely +#define unlikely(x) __builtin_expect((x),0) +#endif /* unlikely */ + + +/* + * rte_tailq related. + */ +static inline void * +rte_dummy_tailq(void) +{ + static __thread TAILQ_HEAD(rte_dummy_head, rte_dummy) dummy_head; + TAILQ_INIT(&dummy_head); + return (&dummy_head); +} + +#define RTE_TAILQ_LOOKUP_BY_IDX(idx, struct_name) rte_dummy_tailq() + +#define RTE_EAL_TAILQ_REMOVE(idx, type, elm) DUMMY_MACRO + +/* + * rte_string related + */ +#define rte_snprintf(str, len, frmt, args...) snprintf(str, len, frmt, ##args) + +/* + * rte_log related + */ +#define RTE_LOG(l, t, fmt, args...) printf(fmt, ##args) + +/* + * rte_malloc related + */ +#define rte_free(x) free(x) + +static inline void * +rte_zmalloc_socket(__rte_unused const char *type, size_t size, unsigned align, + __rte_unused int socket) +{ + void *ptr; + int rc; + + if ((rc = posix_memalign(&ptr, align, size)) != 0) { + rte_errno = rc; + return (NULL); + } + + memset(ptr, 0, size); + return (ptr); +} + +/* + * rte_debug related + */ +#define rte_panic(fmt, args...) do { \ + RTE_LOG(CRIT, EAL, fmt, ##args); \ + abort(); \ +} while (0) + +#define rte_exit(err, fmt, args...) do { \ + RTE_LOG(CRIT, EAL, fmt, ##args); \ + exit(err); \ +} while (0) + +#ifdef __cplusplus +} +#endif + +#endif /* _RTE_ACL_OSDEP_ALONE_H_ */ diff --git a/lib/librte_acl/tb_mem.c b/lib/librte_acl/tb_mem.c new file mode 100644 index 0000000..817d0c8 --- /dev/null +++ b/lib/librte_acl/tb_mem.c @@ -0,0 +1,102 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "tb_mem.h" + +/* + * Memory managment routines for temporary memory. + * That memory is used only during build phase and is released after + * build is finished. + */ + +static struct tb_mem_block * +tb_pool(struct tb_mem_pool *pool, size_t sz) +{ + struct tb_mem_block *block; + uint8_t *ptr; + size_t size; + + size = sz + pool->alignment - 1; + if ((block = calloc(1, size + sizeof(*pool->block))) == NULL) { + RTE_LOG(ERR, MALLOC, "%s(%zu)\n failed, currently allocated " + "by pool: %zu bytes\n", __func__, sz, pool->alloc); + return (NULL); + } + + block->pool = pool; + + block->next = pool->block; + pool->block = block; + + pool->alloc += size; + + ptr = (uint8_t *)(block + 1); + block->mem = RTE_PTR_ALIGN_CEIL(ptr, pool->alignment); + block->size = size - (block->mem - ptr); + + return (block); +} + +void * +tb_alloc(struct tb_mem_pool *pool, size_t size) +{ + struct tb_mem_block *block; + void *ptr; + size_t new_sz; + + size = RTE_ALIGN_CEIL(size, pool->alignment); + + block = pool->block; + if (block == NULL || block->size < size) { + new_sz = (size > pool->min_alloc) ? size : pool->min_alloc; + if ((block = tb_pool(pool, new_sz)) == NULL) + return (NULL); + } + ptr = block->mem; + block->size -= size; + block->mem += size; + return (ptr); +} + +void +tb_free_pool(struct tb_mem_pool *pool) +{ + struct tb_mem_block *next, *block; + + for (block = pool->block; block != NULL; block = next) { + next = block->next; + free(block); + } + pool->block = NULL; + pool->alloc = 0; +} diff --git a/lib/librte_acl/tb_mem.h b/lib/librte_acl/tb_mem.h new file mode 100644 index 0000000..a3ed795 --- /dev/null +++ b/lib/librte_acl/tb_mem.h @@ -0,0 +1,73 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _TB_MEM_H_ +#define _TB_MEM_H_ + +/** + * @file + * + * RTE ACL temporary (build phase) memory managment. + * Contains structures and functions to manage temporary (used by build only) + * memory. Memory allocated in large blocks to speed 'free' when trie is + * destructed (finish of build phase). + */ + +#ifdef __cplusplus +extern "C" { +#endif + +#include + +struct tb_mem_block { + struct tb_mem_block *next; + struct tb_mem_pool *pool; + size_t size; + uint8_t *mem; +}; + +struct tb_mem_pool { + struct tb_mem_block *block; + size_t alignment; + size_t min_alloc; + size_t alloc; +}; + +void *tb_alloc(struct tb_mem_pool *pool, size_t size); +void tb_free_pool(struct tb_mem_pool *pool); + +#ifdef __cplusplus +} +#endif + +#endif /* _TB_MEM_H_ */ -- 1.7.7.6