From: Konstantin Ananyev <konstantin.ananyev@intel.com>
To: dev@dpdk.org
Subject: [dpdk-dev] [PATCH v3 11/18] librte_acl: add AVX2 as new rte_acl_classify() method
Date: Tue, 20 Jan 2015 18:41:00 +0000 [thread overview]
Message-ID: <1421779267-18492-12-git-send-email-konstantin.ananyev@intel.com> (raw)
In-Reply-To: <1421779267-18492-1-git-send-email-konstantin.ananyev@intel.com>
v2 changes:
When build with the compilers that don't support AVX2 instructions,
make rte_acl_classify_avx2() do nothing and return an error.
Remove unneeded 'ifdef __AVX2__' in acl_run_avx2.*.
Introduce new classify() method that uses AVX2 instructions.
>From my measurements:
On HSW boards when processing >= 16 packets per call,
AVX2 method outperforms it's SSE counterpart by 10-25%,
(depending on the ruleset).
At runtime, if librte_acl was build with the compiler that supports AVX2,
this method is selected as default one on HW that supports AVX2.
Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
---
lib/librte_acl/Makefile | 18 ++
lib/librte_acl/acl.h | 4 +
lib/librte_acl/acl_run.h | 2 +-
lib/librte_acl/acl_run_avx2.c | 54 +++++
lib/librte_acl/acl_run_avx2.h | 301 +++++++++++++++++++++++
lib/librte_acl/acl_run_sse.c | 537 +-----------------------------------------
lib/librte_acl/acl_run_sse.h | 533 +++++++++++++++++++++++++++++++++++++++++
lib/librte_acl/rte_acl.c | 27 +++
lib/librte_acl/rte_acl.h | 2 +
9 files changed, 941 insertions(+), 537 deletions(-)
create mode 100644 lib/librte_acl/acl_run_avx2.c
create mode 100644 lib/librte_acl/acl_run_avx2.h
create mode 100644 lib/librte_acl/acl_run_sse.h
diff --git a/lib/librte_acl/Makefile b/lib/librte_acl/Makefile
index 65e566d..6b74dc9 100644
--- a/lib/librte_acl/Makefile
+++ b/lib/librte_acl/Makefile
@@ -48,6 +48,24 @@ SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run_sse.c
CFLAGS_acl_run_sse.o += -msse4.1
+#
+# If the compiler supports AVX2 instructions,
+# then add support for AVX2 classify method.
+#
+
+CC_AVX2_SUPPORT=$(shell $(CC) -march=core-avx2 -dM -E - </dev/null 2>&1 | \
+grep -q AVX2 && echo 1)
+
+ifeq ($(CC_AVX2_SUPPORT), 1)
+ SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run_avx2.c
+ CFLAGS_rte_acl.o += -DCC_AVX2_SUPPORT
+ ifeq ($(CC), icc)
+ CFLAGS_acl_run_avx2.o += -march=core-avx2
+ else
+ CFLAGS_acl_run_avx2.o += -mavx2
+ endif
+endif
+
# install this header file
SYMLINK-$(CONFIG_RTE_LIBRTE_ACL)-include := rte_acl_osdep.h
SYMLINK-$(CONFIG_RTE_LIBRTE_ACL)-include += rte_acl.h
diff --git a/lib/librte_acl/acl.h b/lib/librte_acl/acl.h
index 96bb318..d33d7ad 100644
--- a/lib/librte_acl/acl.h
+++ b/lib/librte_acl/acl.h
@@ -196,6 +196,10 @@ int
rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories);
+int
+rte_acl_classify_avx2(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t num, uint32_t categories);
+
#ifdef __cplusplus
}
#endif /* __cplusplus */
diff --git a/lib/librte_acl/acl_run.h b/lib/librte_acl/acl_run.h
index 4c843c1..850bc81 100644
--- a/lib/librte_acl/acl_run.h
+++ b/lib/librte_acl/acl_run.h
@@ -35,9 +35,9 @@
#define _ACL_RUN_H_
#include <rte_acl.h>
-#include "acl_vect.h"
#include "acl.h"
+#define MAX_SEARCHES_AVX16 16
#define MAX_SEARCHES_SSE8 8
#define MAX_SEARCHES_SSE4 4
#define MAX_SEARCHES_SSE2 2
diff --git a/lib/librte_acl/acl_run_avx2.c b/lib/librte_acl/acl_run_avx2.c
new file mode 100644
index 0000000..0a42f72
--- /dev/null
+++ b/lib/librte_acl/acl_run_avx2.c
@@ -0,0 +1,54 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+#include "acl_run_avx2.h"
+
+/*
+ * Note, that to be able to use AVX2 classify method,
+ * both compiler and target cpu have to support AVX2 instructions.
+ */
+int
+rte_acl_classify_avx2(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t num, uint32_t categories)
+{
+ if (likely(num >= MAX_SEARCHES_AVX16))
+ return search_avx2x16(ctx, data, results, num, categories);
+ else if (num >= MAX_SEARCHES_SSE8)
+ return search_sse_8(ctx, data, results, num, categories);
+ else if (num >= MAX_SEARCHES_SSE4)
+ return search_sse_4(ctx, data, results, num, categories);
+ else
+ return search_sse_2(ctx, data, results, num,
+ categories);
+}
diff --git a/lib/librte_acl/acl_run_avx2.h b/lib/librte_acl/acl_run_avx2.h
new file mode 100644
index 0000000..1688c50
--- /dev/null
+++ b/lib/librte_acl/acl_run_avx2.h
@@ -0,0 +1,301 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "acl_run_sse.h"
+
+static const rte_ymm_t ymm_match_mask = {
+ .u32 = {
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ },
+};
+
+static const rte_ymm_t ymm_index_mask = {
+ .u32 = {
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ },
+};
+
+static const rte_ymm_t ymm_shuffle_input = {
+ .u32 = {
+ 0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c,
+ 0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c,
+ },
+};
+
+static const rte_ymm_t ymm_ones_16 = {
+ .u16 = {
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1,
+ },
+};
+
+static inline __attribute__((always_inline)) ymm_t
+calc_addr_avx2(ymm_t index_mask, ymm_t next_input, ymm_t shuffle_input,
+ ymm_t ones_16, ymm_t tr_lo, ymm_t tr_hi)
+{
+ ymm_t in, node_type, r, t;
+ ymm_t dfa_msk, dfa_ofs, quad_ofs;
+ ymm_t addr;
+
+ const ymm_t range_base = _mm256_set_epi32(
+ 0xffffff0c, 0xffffff08, 0xffffff04, 0xffffff00,
+ 0xffffff0c, 0xffffff08, 0xffffff04, 0xffffff00);
+
+ t = _mm256_xor_si256(index_mask, index_mask);
+ in = _mm256_shuffle_epi8(next_input, shuffle_input);
+
+ /* Calc node type and node addr */
+ node_type = _mm256_andnot_si256(index_mask, tr_lo);
+ addr = _mm256_and_si256(index_mask, tr_lo);
+
+ /* DFA calculations. */
+
+ dfa_msk = _mm256_cmpeq_epi32(node_type, t);
+
+ r = _mm256_srli_epi32(in, 30);
+ r = _mm256_add_epi8(r, range_base);
+
+ t = _mm256_srli_epi32(in, 24);
+ r = _mm256_shuffle_epi8(tr_hi, r);
+
+ dfa_ofs = _mm256_sub_epi32(t, r);
+
+ /* QUAD/SINGLE caluclations. */
+
+ t = _mm256_cmpgt_epi8(in, tr_hi);
+ t = _mm256_sign_epi8(t, t);
+ t = _mm256_maddubs_epi16(t, t);
+ quad_ofs = _mm256_madd_epi16(t, ones_16);
+
+ /* blend DFA and QUAD/SINGLE. */
+ t = _mm256_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
+
+ addr = _mm256_add_epi32(addr, t);
+ return addr;
+}
+
+static inline __attribute__((always_inline)) ymm_t
+transition8(ymm_t next_input, const uint64_t *trans, ymm_t *tr_lo, ymm_t *tr_hi)
+{
+ const int32_t *tr;
+ ymm_t addr;
+
+ tr = (const int32_t *)(uintptr_t)trans;
+
+ addr = calc_addr_avx2(ymm_index_mask.y, next_input, ymm_shuffle_input.y,
+ ymm_ones_16.y, *tr_lo, *tr_hi);
+
+ /* load lower 32 bits of 8 transactions at once. */
+ *tr_lo = _mm256_i32gather_epi32(tr, addr, sizeof(trans[0]));
+
+ next_input = _mm256_srli_epi32(next_input, CHAR_BIT);
+
+ /* load high 32 bits of 8 transactions at once. */
+ *tr_hi = _mm256_i32gather_epi32(tr + 1, addr, sizeof(trans[0]));
+
+ return next_input;
+}
+
+static inline void
+acl_process_matches_avx2x8(const struct rte_acl_ctx *ctx,
+ struct parms *parms, struct acl_flow_data *flows, uint32_t slot,
+ ymm_t matches, ymm_t *tr_lo, ymm_t *tr_hi)
+{
+ ymm_t t0, t1;
+ ymm_t lo, hi;
+ xmm_t l0, l1;
+ uint32_t i;
+ uint64_t tr[MAX_SEARCHES_SSE8];
+
+ l1 = _mm256_extracti128_si256(*tr_lo, 1);
+ l0 = _mm256_castsi256_si128(*tr_lo);
+
+ for (i = 0; i != RTE_DIM(tr) / 2; i++) {
+ tr[i] = (uint32_t)_mm_cvtsi128_si32(l0);
+ tr[i + 4] = (uint32_t)_mm_cvtsi128_si32(l1);
+
+ l0 = _mm_srli_si128(l0, sizeof(uint32_t));
+ l1 = _mm_srli_si128(l1, sizeof(uint32_t));
+
+ tr[i] = acl_match_check(tr[i], slot + i,
+ ctx, parms, flows, resolve_priority_sse);
+ tr[i + 4] = acl_match_check(tr[i + 4], slot + i + 4,
+ ctx, parms, flows, resolve_priority_sse);
+ }
+
+ t0 = _mm256_set_epi64x(tr[5], tr[4], tr[1], tr[0]);
+ t1 = _mm256_set_epi64x(tr[7], tr[6], tr[3], tr[2]);
+
+ lo = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
+ hi = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
+
+ *tr_lo = _mm256_blendv_epi8(*tr_lo, lo, matches);
+ *tr_hi = _mm256_blendv_epi8(*tr_hi, hi, matches);
+}
+
+static inline void
+acl_match_check_avx2x8(const struct rte_acl_ctx *ctx, struct parms *parms,
+ struct acl_flow_data *flows, uint32_t slot,
+ ymm_t *tr_lo, ymm_t *tr_hi, ymm_t match_mask)
+{
+ uint32_t msk;
+ ymm_t matches, temp;
+
+ /* test for match node */
+ temp = _mm256_and_si256(match_mask, *tr_lo);
+ matches = _mm256_cmpeq_epi32(temp, match_mask);
+ msk = _mm256_movemask_epi8(matches);
+
+ while (msk != 0) {
+
+ acl_process_matches_avx2x8(ctx, parms, flows, slot,
+ matches, tr_lo, tr_hi);
+ temp = _mm256_and_si256(match_mask, *tr_lo);
+ matches = _mm256_cmpeq_epi32(temp, match_mask);
+ msk = _mm256_movemask_epi8(matches);
+ }
+}
+
+static inline int
+search_avx2x16(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+ uint32_t n;
+ struct acl_flow_data flows;
+ uint64_t index_array[MAX_SEARCHES_AVX16];
+ struct completion cmplt[MAX_SEARCHES_AVX16];
+ struct parms parms[MAX_SEARCHES_AVX16];
+ ymm_t input[2], tr_lo[2], tr_hi[2];
+ ymm_t t0, t1;
+
+ acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+ total_packets, categories, ctx->trans_table);
+
+ for (n = 0; n < RTE_DIM(cmplt); n++) {
+ cmplt[n].count = 0;
+ index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+ }
+
+ t0 = _mm256_set_epi64x(index_array[5], index_array[4],
+ index_array[1], index_array[0]);
+ t1 = _mm256_set_epi64x(index_array[7], index_array[6],
+ index_array[3], index_array[2]);
+
+ tr_lo[0] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
+ tr_hi[0] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
+
+ t0 = _mm256_set_epi64x(index_array[13], index_array[12],
+ index_array[9], index_array[8]);
+ t1 = _mm256_set_epi64x(index_array[15], index_array[14],
+ index_array[11], index_array[10]);
+
+ tr_lo[1] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
+ tr_hi[1] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
+
+ /* Check for any matches. */
+ acl_match_check_avx2x8(ctx, parms, &flows, 0, &tr_lo[0], &tr_hi[0],
+ ymm_match_mask.y);
+ acl_match_check_avx2x8(ctx, parms, &flows, 8, &tr_lo[1], &tr_hi[1],
+ ymm_match_mask.y);
+
+ while (flows.started > 0) {
+
+ uint32_t in[MAX_SEARCHES_SSE8];
+
+ /* Gather 4 bytes of input data for first 8 flows. */
+ in[0] = GET_NEXT_4BYTES(parms, 0);
+ in[4] = GET_NEXT_4BYTES(parms, 4);
+ in[1] = GET_NEXT_4BYTES(parms, 1);
+ in[5] = GET_NEXT_4BYTES(parms, 5);
+ in[2] = GET_NEXT_4BYTES(parms, 2);
+ in[6] = GET_NEXT_4BYTES(parms, 6);
+ in[3] = GET_NEXT_4BYTES(parms, 3);
+ in[7] = GET_NEXT_4BYTES(parms, 7);
+ input[0] = _mm256_set_epi32(in[7], in[6], in[5], in[4],
+ in[3], in[2], in[1], in[0]);
+
+ /* Gather 4 bytes of input data for last 8 flows. */
+ in[0] = GET_NEXT_4BYTES(parms, 8);
+ in[4] = GET_NEXT_4BYTES(parms, 12);
+ in[1] = GET_NEXT_4BYTES(parms, 9);
+ in[5] = GET_NEXT_4BYTES(parms, 13);
+ in[2] = GET_NEXT_4BYTES(parms, 10);
+ in[6] = GET_NEXT_4BYTES(parms, 14);
+ in[3] = GET_NEXT_4BYTES(parms, 11);
+ in[7] = GET_NEXT_4BYTES(parms, 15);
+ input[1] = _mm256_set_epi32(in[7], in[6], in[5], in[4],
+ in[3], in[2], in[1], in[0]);
+
+ input[0] = transition8(input[0], flows.trans,
+ &tr_lo[0], &tr_hi[0]);
+ input[1] = transition8(input[1], flows.trans,
+ &tr_lo[1], &tr_hi[1]);
+
+ input[0] = transition8(input[0], flows.trans,
+ &tr_lo[0], &tr_hi[0]);
+ input[1] = transition8(input[1], flows.trans,
+ &tr_lo[1], &tr_hi[1]);
+
+ input[0] = transition8(input[0], flows.trans,
+ &tr_lo[0], &tr_hi[0]);
+ input[1] = transition8(input[1], flows.trans,
+ &tr_lo[1], &tr_hi[1]);
+
+ input[0] = transition8(input[0], flows.trans,
+ &tr_lo[0], &tr_hi[0]);
+ input[1] = transition8(input[1], flows.trans,
+ &tr_lo[1], &tr_hi[1]);
+
+ /* Check for any matches. */
+ acl_match_check_avx2x8(ctx, parms, &flows, 0,
+ &tr_lo[0], &tr_hi[0], ymm_match_mask.y);
+ acl_match_check_avx2x8(ctx, parms, &flows, 8,
+ &tr_lo[1], &tr_hi[1], ymm_match_mask.y);
+ }
+
+ return 0;
+}
diff --git a/lib/librte_acl/acl_run_sse.c b/lib/librte_acl/acl_run_sse.c
index 4605b58..77b32b3 100644
--- a/lib/librte_acl/acl_run_sse.c
+++ b/lib/librte_acl/acl_run_sse.c
@@ -31,542 +31,7 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
-#include "acl_run.h"
-
-enum {
- SHUFFLE32_SLOT1 = 0xe5,
- SHUFFLE32_SLOT2 = 0xe6,
- SHUFFLE32_SLOT3 = 0xe7,
- SHUFFLE32_SWAP64 = 0x4e,
-};
-
-static const rte_xmm_t mm_shuffle_input = {
- .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
-};
-
-static const rte_xmm_t mm_shuffle_input64 = {
- .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
-};
-
-static const rte_xmm_t mm_ones_16 = {
- .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
-};
-
-static const rte_xmm_t mm_match_mask = {
- .u32 = {
- RTE_ACL_NODE_MATCH,
- RTE_ACL_NODE_MATCH,
- RTE_ACL_NODE_MATCH,
- RTE_ACL_NODE_MATCH,
- },
-};
-
-static const rte_xmm_t mm_match_mask64 = {
- .u32 = {
- RTE_ACL_NODE_MATCH,
- 0,
- RTE_ACL_NODE_MATCH,
- 0,
- },
-};
-
-static const rte_xmm_t mm_index_mask = {
- .u32 = {
- RTE_ACL_NODE_INDEX,
- RTE_ACL_NODE_INDEX,
- RTE_ACL_NODE_INDEX,
- RTE_ACL_NODE_INDEX,
- },
-};
-
-static const rte_xmm_t mm_index_mask64 = {
- .u32 = {
- RTE_ACL_NODE_INDEX,
- RTE_ACL_NODE_INDEX,
- 0,
- 0,
- },
-};
-
-
-/*
- * Resolve priority for multiple results (sse version).
- * This consists comparing the priority of the current traversal with the
- * running set of results for the packet.
- * For each result, keep a running array of the result (rule number) and
- * its priority for each category.
- */
-static inline void
-resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
- struct parms *parms, const struct rte_acl_match_results *p,
- uint32_t categories)
-{
- uint32_t x;
- xmm_t results, priority, results1, priority1, selector;
- xmm_t *saved_results, *saved_priority;
-
- for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
-
- saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
- saved_priority =
- (xmm_t *)(&parms[n].cmplt->priority[x]);
-
- /* get results and priorities for completed trie */
- results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
- priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
-
- /* if this is not the first completed trie */
- if (parms[n].cmplt->count != ctx->num_tries) {
-
- /* get running best results and their priorities */
- results1 = MM_LOADU(saved_results);
- priority1 = MM_LOADU(saved_priority);
-
- /* select results that are highest priority */
- selector = MM_CMPGT32(priority1, priority);
- results = MM_BLENDV8(results, results1, selector);
- priority = MM_BLENDV8(priority, priority1, selector);
- }
-
- /* save running best results and their priorities */
- MM_STOREU(saved_results, results);
- MM_STOREU(saved_priority, priority);
- }
-}
-
-/*
- * Extract transitions from an XMM register and check for any matches
- */
-static void
-acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
- struct parms *parms, struct acl_flow_data *flows)
-{
- uint64_t transition1, transition2;
-
- /* extract transition from low 64 bits. */
- transition1 = MM_CVT64(*indices);
-
- /* extract transition from high 64 bits. */
- *indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64);
- transition2 = MM_CVT64(*indices);
-
- transition1 = acl_match_check(transition1, slot, ctx,
- parms, flows, resolve_priority_sse);
- transition2 = acl_match_check(transition2, slot + 1, ctx,
- parms, flows, resolve_priority_sse);
-
- /* update indices with new transitions. */
- *indices = MM_SET64(transition2, transition1);
-}
-
-/*
- * Check for a match in 2 transitions (contained in SSE register)
- */
-static inline void
-acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
- struct acl_flow_data *flows, xmm_t *indices, xmm_t match_mask)
-{
- xmm_t temp;
-
- temp = MM_AND(match_mask, *indices);
- while (!MM_TESTZ(temp, temp)) {
- acl_process_matches(indices, slot, ctx, parms, flows);
- temp = MM_AND(match_mask, *indices);
- }
-}
-
-/*
- * Check for any match in 4 transitions (contained in 2 SSE registers)
- */
-static inline void
-acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
- struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2,
- xmm_t match_mask)
-{
- xmm_t temp;
-
- /* put low 32 bits of each transition into one register */
- temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
- 0x88);
- /* test for match node */
- temp = MM_AND(match_mask, temp);
-
- while (!MM_TESTZ(temp, temp)) {
- acl_process_matches(indices1, slot, ctx, parms, flows);
- acl_process_matches(indices2, slot + 2, ctx, parms, flows);
-
- temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
- (__m128)*indices2,
- 0x88);
- temp = MM_AND(match_mask, temp);
- }
-}
-
-/*
- * Calculate the address of the next transition for
- * all types of nodes. Note that only DFA nodes and range
- * nodes actually transition to another node. Match
- * nodes don't move.
- */
-static inline xmm_t
-acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
- xmm_t ones_16, xmm_t indices1, xmm_t indices2)
-{
- xmm_t addr, node_types, range, temp;
- xmm_t dfa_msk, dfa_ofs, quad_ofs;
- xmm_t in, r, t;
-
- const xmm_t range_base = _mm_set_epi32(0xffffff0c, 0xffffff08,
- 0xffffff04, 0xffffff00);
-
- /*
- * Note that no transition is done for a match
- * node and therefore a stream freezes when
- * it reaches a match.
- */
-
- /* Shuffle low 32 into temp and high 32 into indices2 */
- temp = (xmm_t)MM_SHUFFLEPS((__m128)indices1, (__m128)indices2, 0x88);
- range = (xmm_t)MM_SHUFFLEPS((__m128)indices1, (__m128)indices2, 0xdd);
-
- t = MM_XOR(index_mask, index_mask);
-
- /* shuffle input byte to all 4 positions of 32 bit value */
- in = MM_SHUFFLE8(next_input, shuffle_input);
-
- /* Calc node type and node addr */
- node_types = MM_ANDNOT(index_mask, temp);
- addr = MM_AND(index_mask, temp);
-
- /*
- * Calc addr for DFAs - addr = dfa_index + input_byte
- */
-
- /* mask for DFA type (0) nodes */
- dfa_msk = MM_CMPEQ32(node_types, t);
-
- r = _mm_srli_epi32(in, 30);
- r = _mm_add_epi8(r, range_base);
-
- t = _mm_srli_epi32(in, 24);
- r = _mm_shuffle_epi8(range, r);
-
- dfa_ofs = _mm_sub_epi32(t, r);
-
- /*
- * Calculate number of range boundaries that are less than the
- * input value. Range boundaries for each node are in signed 8 bit,
- * ordered from -128 to 127 in the indices2 register.
- * This is effectively a popcnt of bytes that are greater than the
- * input byte.
- */
-
- /* check ranges */
- temp = MM_CMPGT8(in, range);
-
- /* convert -1 to 1 (bytes greater than input byte */
- temp = MM_SIGN8(temp, temp);
-
- /* horizontal add pairs of bytes into words */
- temp = MM_MADD8(temp, temp);
-
- /* horizontal add pairs of words into dwords */
- quad_ofs = MM_MADD16(temp, ones_16);
-
- /* mask to range type nodes */
- temp = _mm_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
-
- /* add index into node position */
- return MM_ADD32(addr, temp);
-}
-
-/*
- * Process 4 transitions (in 2 SIMD registers) in parallel
- */
-static inline xmm_t
-transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
- xmm_t ones_16, const uint64_t *trans,
- xmm_t *indices1, xmm_t *indices2)
-{
- xmm_t addr;
- uint64_t trans0, trans2;
-
- /* Calculate the address (array index) for all 4 transitions. */
-
- addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
- *indices1, *indices2);
-
- /* Gather 64 bit transitions and pack back into 2 registers. */
-
- trans0 = trans[MM_CVT32(addr)];
-
- /* get slot 2 */
-
- /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
- trans2 = trans[MM_CVT32(addr)];
-
- /* get slot 1 */
-
- /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
- *indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
-
- /* get slot 3 */
-
- /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
- *indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
-
- return MM_SRL32(next_input, 8);
-}
-
-/*
- * Execute trie traversal with 8 traversals in parallel
- */
-static inline int
-search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
- int n;
- struct acl_flow_data flows;
- uint64_t index_array[MAX_SEARCHES_SSE8];
- struct completion cmplt[MAX_SEARCHES_SSE8];
- struct parms parms[MAX_SEARCHES_SSE8];
- xmm_t input0, input1;
- xmm_t indices1, indices2, indices3, indices4;
-
- acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
- total_packets, categories, ctx->trans_table);
-
- for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
- cmplt[n].count = 0;
- index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
- }
-
- /*
- * indices1 contains index_array[0,1]
- * indices2 contains index_array[2,3]
- * indices3 contains index_array[4,5]
- * indices4 contains index_array[6,7]
- */
-
- indices1 = MM_LOADU((xmm_t *) &index_array[0]);
- indices2 = MM_LOADU((xmm_t *) &index_array[2]);
-
- indices3 = MM_LOADU((xmm_t *) &index_array[4]);
- indices4 = MM_LOADU((xmm_t *) &index_array[6]);
-
- /* Check for any matches. */
- acl_match_check_x4(0, ctx, parms, &flows,
- &indices1, &indices2, mm_match_mask.x);
- acl_match_check_x4(4, ctx, parms, &flows,
- &indices3, &indices4, mm_match_mask.x);
-
- while (flows.started > 0) {
-
- /* Gather 4 bytes of input data for each stream. */
- input0 = MM_INSERT32(mm_ones_16.x, GET_NEXT_4BYTES(parms, 0),
- 0);
- input1 = MM_INSERT32(mm_ones_16.x, GET_NEXT_4BYTES(parms, 4),
- 0);
-
- input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
- input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
-
- input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
- input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
-
- input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
- input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
-
- /* Process the 4 bytes of input on each stream. */
-
- input0 = transition4(mm_index_mask.x, input0,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices1, &indices2);
-
- input1 = transition4(mm_index_mask.x, input1,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices3, &indices4);
-
- input0 = transition4(mm_index_mask.x, input0,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices1, &indices2);
-
- input1 = transition4(mm_index_mask.x, input1,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices3, &indices4);
-
- input0 = transition4(mm_index_mask.x, input0,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices1, &indices2);
-
- input1 = transition4(mm_index_mask.x, input1,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices3, &indices4);
-
- input0 = transition4(mm_index_mask.x, input0,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices1, &indices2);
-
- input1 = transition4(mm_index_mask.x, input1,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices3, &indices4);
-
- /* Check for any matches. */
- acl_match_check_x4(0, ctx, parms, &flows,
- &indices1, &indices2, mm_match_mask.x);
- acl_match_check_x4(4, ctx, parms, &flows,
- &indices3, &indices4, mm_match_mask.x);
- }
-
- return 0;
-}
-
-/*
- * Execute trie traversal with 4 traversals in parallel
- */
-static inline int
-search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, int total_packets, uint32_t categories)
-{
- int n;
- struct acl_flow_data flows;
- uint64_t index_array[MAX_SEARCHES_SSE4];
- struct completion cmplt[MAX_SEARCHES_SSE4];
- struct parms parms[MAX_SEARCHES_SSE4];
- xmm_t input, indices1, indices2;
-
- acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
- total_packets, categories, ctx->trans_table);
-
- for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
- cmplt[n].count = 0;
- index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
- }
-
- indices1 = MM_LOADU((xmm_t *) &index_array[0]);
- indices2 = MM_LOADU((xmm_t *) &index_array[2]);
-
- /* Check for any matches. */
- acl_match_check_x4(0, ctx, parms, &flows,
- &indices1, &indices2, mm_match_mask.x);
-
- while (flows.started > 0) {
-
- /* Gather 4 bytes of input data for each stream. */
- input = MM_INSERT32(mm_ones_16.x, GET_NEXT_4BYTES(parms, 0), 0);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
-
- /* Process the 4 bytes of input on each stream. */
- input = transition4(mm_index_mask.x, input,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices1, &indices2);
-
- input = transition4(mm_index_mask.x, input,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices1, &indices2);
-
- input = transition4(mm_index_mask.x, input,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices1, &indices2);
-
- input = transition4(mm_index_mask.x, input,
- mm_shuffle_input.x, mm_ones_16.x,
- flows.trans, &indices1, &indices2);
-
- /* Check for any matches. */
- acl_match_check_x4(0, ctx, parms, &flows,
- &indices1, &indices2, mm_match_mask.x);
- }
-
- return 0;
-}
-
-static inline xmm_t
-transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
- xmm_t ones_16, const uint64_t *trans, xmm_t *indices1)
-{
- uint64_t t;
- xmm_t addr, indices2;
-
- indices2 = MM_XOR(ones_16, ones_16);
-
- addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
- *indices1, indices2);
-
- /* Gather 64 bit transitions and pack 2 per register. */
-
- t = trans[MM_CVT32(addr)];
-
- /* get slot 1 */
- addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
- *indices1 = MM_SET64(trans[MM_CVT32(addr)], t);
-
- return MM_SRL32(next_input, 8);
-}
-
-/*
- * Execute trie traversal with 2 traversals in parallel.
- */
-static inline int
-search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
- uint32_t *results, uint32_t total_packets, uint32_t categories)
-{
- int n;
- struct acl_flow_data flows;
- uint64_t index_array[MAX_SEARCHES_SSE2];
- struct completion cmplt[MAX_SEARCHES_SSE2];
- struct parms parms[MAX_SEARCHES_SSE2];
- xmm_t input, indices;
-
- acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
- total_packets, categories, ctx->trans_table);
-
- for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
- cmplt[n].count = 0;
- index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
- }
-
- indices = MM_LOADU((xmm_t *) &index_array[0]);
-
- /* Check for any matches. */
- acl_match_check_x2(0, ctx, parms, &flows, &indices, mm_match_mask64.x);
-
- while (flows.started > 0) {
-
- /* Gather 4 bytes of input data for each stream. */
- input = MM_INSERT32(mm_ones_16.x, GET_NEXT_4BYTES(parms, 0), 0);
- input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
-
- /* Process the 4 bytes of input on each stream. */
-
- input = transition2(mm_index_mask64.x, input,
- mm_shuffle_input64.x, mm_ones_16.x,
- flows.trans, &indices);
-
- input = transition2(mm_index_mask64.x, input,
- mm_shuffle_input64.x, mm_ones_16.x,
- flows.trans, &indices);
-
- input = transition2(mm_index_mask64.x, input,
- mm_shuffle_input64.x, mm_ones_16.x,
- flows.trans, &indices);
-
- input = transition2(mm_index_mask64.x, input,
- mm_shuffle_input64.x, mm_ones_16.x,
- flows.trans, &indices);
-
- /* Check for any matches. */
- acl_match_check_x2(0, ctx, parms, &flows, &indices,
- mm_match_mask64.x);
- }
-
- return 0;
-}
+#include "acl_run_sse.h"
int
rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
diff --git a/lib/librte_acl/acl_run_sse.h b/lib/librte_acl/acl_run_sse.h
new file mode 100644
index 0000000..e33e16b
--- /dev/null
+++ b/lib/librte_acl/acl_run_sse.h
@@ -0,0 +1,533 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "acl_run.h"
+#include "acl_vect.h"
+
+enum {
+ SHUFFLE32_SLOT1 = 0xe5,
+ SHUFFLE32_SLOT2 = 0xe6,
+ SHUFFLE32_SLOT3 = 0xe7,
+ SHUFFLE32_SWAP64 = 0x4e,
+};
+
+static const rte_xmm_t xmm_shuffle_input = {
+ .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
+};
+
+static const rte_xmm_t xmm_shuffle_input64 = {
+ .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
+};
+
+static const rte_xmm_t xmm_ones_16 = {
+ .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
+};
+
+static const rte_xmm_t xmm_match_mask = {
+ .u32 = {
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ RTE_ACL_NODE_MATCH,
+ },
+};
+
+static const rte_xmm_t xmm_match_mask64 = {
+ .u32 = {
+ RTE_ACL_NODE_MATCH,
+ 0,
+ RTE_ACL_NODE_MATCH,
+ 0,
+ },
+};
+
+static const rte_xmm_t xmm_index_mask = {
+ .u32 = {
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ },
+};
+
+static const rte_xmm_t xmm_index_mask64 = {
+ .u32 = {
+ RTE_ACL_NODE_INDEX,
+ RTE_ACL_NODE_INDEX,
+ 0,
+ 0,
+ },
+};
+
+
+/*
+ * Resolve priority for multiple results (sse version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
+ */
+static inline void
+resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
+ struct parms *parms, const struct rte_acl_match_results *p,
+ uint32_t categories)
+{
+ uint32_t x;
+ xmm_t results, priority, results1, priority1, selector;
+ xmm_t *saved_results, *saved_priority;
+
+ for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
+
+ saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
+ saved_priority =
+ (xmm_t *)(&parms[n].cmplt->priority[x]);
+
+ /* get results and priorities for completed trie */
+ results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
+ priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
+
+ /* if this is not the first completed trie */
+ if (parms[n].cmplt->count != ctx->num_tries) {
+
+ /* get running best results and their priorities */
+ results1 = MM_LOADU(saved_results);
+ priority1 = MM_LOADU(saved_priority);
+
+ /* select results that are highest priority */
+ selector = MM_CMPGT32(priority1, priority);
+ results = MM_BLENDV8(results, results1, selector);
+ priority = MM_BLENDV8(priority, priority1, selector);
+ }
+
+ /* save running best results and their priorities */
+ MM_STOREU(saved_results, results);
+ MM_STOREU(saved_priority, priority);
+ }
+}
+
+/*
+ * Extract transitions from an XMM register and check for any matches
+ */
+static void
+acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
+ struct parms *parms, struct acl_flow_data *flows)
+{
+ uint64_t transition1, transition2;
+
+ /* extract transition from low 64 bits. */
+ transition1 = MM_CVT64(*indices);
+
+ /* extract transition from high 64 bits. */
+ *indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64);
+ transition2 = MM_CVT64(*indices);
+
+ transition1 = acl_match_check(transition1, slot, ctx,
+ parms, flows, resolve_priority_sse);
+ transition2 = acl_match_check(transition2, slot + 1, ctx,
+ parms, flows, resolve_priority_sse);
+
+ /* update indices with new transitions. */
+ *indices = MM_SET64(transition2, transition1);
+}
+
+/*
+ * Check for a match in 2 transitions (contained in SSE register)
+ */
+static inline __attribute__((always_inline)) void
+acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
+ struct acl_flow_data *flows, xmm_t *indices, xmm_t match_mask)
+{
+ xmm_t temp;
+
+ temp = MM_AND(match_mask, *indices);
+ while (!MM_TESTZ(temp, temp)) {
+ acl_process_matches(indices, slot, ctx, parms, flows);
+ temp = MM_AND(match_mask, *indices);
+ }
+}
+
+/*
+ * Check for any match in 4 transitions (contained in 2 SSE registers)
+ */
+static inline __attribute__((always_inline)) void
+acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
+ struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2,
+ xmm_t match_mask)
+{
+ xmm_t temp;
+
+ /* put low 32 bits of each transition into one register */
+ temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
+ 0x88);
+ /* test for match node */
+ temp = MM_AND(match_mask, temp);
+
+ while (!MM_TESTZ(temp, temp)) {
+ acl_process_matches(indices1, slot, ctx, parms, flows);
+ acl_process_matches(indices2, slot + 2, ctx, parms, flows);
+
+ temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
+ (__m128)*indices2,
+ 0x88);
+ temp = MM_AND(match_mask, temp);
+ }
+}
+
+/*
+ * Calculate the address of the next transition for
+ * all types of nodes. Note that only DFA nodes and range
+ * nodes actually transition to another node. Match
+ * nodes don't move.
+ */
+static inline __attribute__((always_inline)) xmm_t
+calc_addr_sse(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
+ xmm_t ones_16, xmm_t indices1, xmm_t indices2)
+{
+ xmm_t addr, node_types, range, temp;
+ xmm_t dfa_msk, dfa_ofs, quad_ofs;
+ xmm_t in, r, t;
+
+ const xmm_t range_base = _mm_set_epi32(0xffffff0c, 0xffffff08,
+ 0xffffff04, 0xffffff00);
+
+ /*
+ * Note that no transition is done for a match
+ * node and therefore a stream freezes when
+ * it reaches a match.
+ */
+
+ /* Shuffle low 32 into temp and high 32 into indices2 */
+ temp = (xmm_t)MM_SHUFFLEPS((__m128)indices1, (__m128)indices2, 0x88);
+ range = (xmm_t)MM_SHUFFLEPS((__m128)indices1, (__m128)indices2, 0xdd);
+
+ t = MM_XOR(index_mask, index_mask);
+
+ /* shuffle input byte to all 4 positions of 32 bit value */
+ in = MM_SHUFFLE8(next_input, shuffle_input);
+
+ /* Calc node type and node addr */
+ node_types = MM_ANDNOT(index_mask, temp);
+ addr = MM_AND(index_mask, temp);
+
+ /*
+ * Calc addr for DFAs - addr = dfa_index + input_byte
+ */
+
+ /* mask for DFA type (0) nodes */
+ dfa_msk = MM_CMPEQ32(node_types, t);
+
+ r = _mm_srli_epi32(in, 30);
+ r = _mm_add_epi8(r, range_base);
+
+ t = _mm_srli_epi32(in, 24);
+ r = _mm_shuffle_epi8(range, r);
+
+ dfa_ofs = _mm_sub_epi32(t, r);
+
+ /*
+ * Calculate number of range boundaries that are less than the
+ * input value. Range boundaries for each node are in signed 8 bit,
+ * ordered from -128 to 127 in the indices2 register.
+ * This is effectively a popcnt of bytes that are greater than the
+ * input byte.
+ */
+
+ /* check ranges */
+ temp = MM_CMPGT8(in, range);
+
+ /* convert -1 to 1 (bytes greater than input byte */
+ temp = MM_SIGN8(temp, temp);
+
+ /* horizontal add pairs of bytes into words */
+ temp = MM_MADD8(temp, temp);
+
+ /* horizontal add pairs of words into dwords */
+ quad_ofs = MM_MADD16(temp, ones_16);
+
+ /* mask to range type nodes */
+ temp = _mm_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
+
+ /* add index into node position */
+ return MM_ADD32(addr, temp);
+}
+
+/*
+ * Process 4 transitions (in 2 SIMD registers) in parallel
+ */
+static inline __attribute__((always_inline)) xmm_t
+transition4(xmm_t next_input, const uint64_t *trans,
+ xmm_t *indices1, xmm_t *indices2)
+{
+ xmm_t addr;
+ uint64_t trans0, trans2;
+
+ /* Calculate the address (array index) for all 4 transitions. */
+
+ addr = calc_addr_sse(xmm_index_mask.x, next_input, xmm_shuffle_input.x,
+ xmm_ones_16.x, *indices1, *indices2);
+
+ /* Gather 64 bit transitions and pack back into 2 registers. */
+
+ trans0 = trans[MM_CVT32(addr)];
+
+ /* get slot 2 */
+
+ /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
+ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
+ trans2 = trans[MM_CVT32(addr)];
+
+ /* get slot 1 */
+
+ /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
+ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
+ *indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
+
+ /* get slot 3 */
+
+ /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
+ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
+ *indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
+
+ return MM_SRL32(next_input, CHAR_BIT);
+}
+
+/*
+ * Execute trie traversal with 8 traversals in parallel
+ */
+static inline int
+search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+ int n;
+ struct acl_flow_data flows;
+ uint64_t index_array[MAX_SEARCHES_SSE8];
+ struct completion cmplt[MAX_SEARCHES_SSE8];
+ struct parms parms[MAX_SEARCHES_SSE8];
+ xmm_t input0, input1;
+ xmm_t indices1, indices2, indices3, indices4;
+
+ acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+ total_packets, categories, ctx->trans_table);
+
+ for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
+ cmplt[n].count = 0;
+ index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+ }
+
+ /*
+ * indices1 contains index_array[0,1]
+ * indices2 contains index_array[2,3]
+ * indices3 contains index_array[4,5]
+ * indices4 contains index_array[6,7]
+ */
+
+ indices1 = MM_LOADU((xmm_t *) &index_array[0]);
+ indices2 = MM_LOADU((xmm_t *) &index_array[2]);
+
+ indices3 = MM_LOADU((xmm_t *) &index_array[4]);
+ indices4 = MM_LOADU((xmm_t *) &index_array[6]);
+
+ /* Check for any matches. */
+ acl_match_check_x4(0, ctx, parms, &flows,
+ &indices1, &indices2, xmm_match_mask.x);
+ acl_match_check_x4(4, ctx, parms, &flows,
+ &indices3, &indices4, xmm_match_mask.x);
+
+ while (flows.started > 0) {
+
+ /* Gather 4 bytes of input data for each stream. */
+ input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
+ input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
+
+ input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
+ input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
+
+ input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
+ input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
+
+ input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
+ input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
+
+ /* Process the 4 bytes of input on each stream. */
+
+ input0 = transition4(input0, flows.trans,
+ &indices1, &indices2);
+ input1 = transition4(input1, flows.trans,
+ &indices3, &indices4);
+
+ input0 = transition4(input0, flows.trans,
+ &indices1, &indices2);
+ input1 = transition4(input1, flows.trans,
+ &indices3, &indices4);
+
+ input0 = transition4(input0, flows.trans,
+ &indices1, &indices2);
+ input1 = transition4(input1, flows.trans,
+ &indices3, &indices4);
+
+ input0 = transition4(input0, flows.trans,
+ &indices1, &indices2);
+ input1 = transition4(input1, flows.trans,
+ &indices3, &indices4);
+
+ /* Check for any matches. */
+ acl_match_check_x4(0, ctx, parms, &flows,
+ &indices1, &indices2, xmm_match_mask.x);
+ acl_match_check_x4(4, ctx, parms, &flows,
+ &indices3, &indices4, xmm_match_mask.x);
+ }
+
+ return 0;
+}
+
+/*
+ * Execute trie traversal with 4 traversals in parallel
+ */
+static inline int
+search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, int total_packets, uint32_t categories)
+{
+ int n;
+ struct acl_flow_data flows;
+ uint64_t index_array[MAX_SEARCHES_SSE4];
+ struct completion cmplt[MAX_SEARCHES_SSE4];
+ struct parms parms[MAX_SEARCHES_SSE4];
+ xmm_t input, indices1, indices2;
+
+ acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+ total_packets, categories, ctx->trans_table);
+
+ for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
+ cmplt[n].count = 0;
+ index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+ }
+
+ indices1 = MM_LOADU((xmm_t *) &index_array[0]);
+ indices2 = MM_LOADU((xmm_t *) &index_array[2]);
+
+ /* Check for any matches. */
+ acl_match_check_x4(0, ctx, parms, &flows,
+ &indices1, &indices2, xmm_match_mask.x);
+
+ while (flows.started > 0) {
+
+ /* Gather 4 bytes of input data for each stream. */
+ input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
+ input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
+ input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
+ input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
+
+ /* Process the 4 bytes of input on each stream. */
+ input = transition4(input, flows.trans, &indices1, &indices2);
+ input = transition4(input, flows.trans, &indices1, &indices2);
+ input = transition4(input, flows.trans, &indices1, &indices2);
+ input = transition4(input, flows.trans, &indices1, &indices2);
+
+ /* Check for any matches. */
+ acl_match_check_x4(0, ctx, parms, &flows,
+ &indices1, &indices2, xmm_match_mask.x);
+ }
+
+ return 0;
+}
+
+static inline __attribute__((always_inline)) xmm_t
+transition2(xmm_t next_input, const uint64_t *trans, xmm_t *indices1)
+{
+ uint64_t t;
+ xmm_t addr, indices2;
+
+ indices2 = _mm_setzero_si128();
+
+ addr = calc_addr_sse(xmm_index_mask.x, next_input, xmm_shuffle_input.x,
+ xmm_ones_16.x, *indices1, indices2);
+
+ /* Gather 64 bit transitions and pack 2 per register. */
+
+ t = trans[MM_CVT32(addr)];
+
+ /* get slot 1 */
+ addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
+ *indices1 = MM_SET64(trans[MM_CVT32(addr)], t);
+
+ return MM_SRL32(next_input, CHAR_BIT);
+}
+
+/*
+ * Execute trie traversal with 2 traversals in parallel.
+ */
+static inline int
+search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
+ uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+ int n;
+ struct acl_flow_data flows;
+ uint64_t index_array[MAX_SEARCHES_SSE2];
+ struct completion cmplt[MAX_SEARCHES_SSE2];
+ struct parms parms[MAX_SEARCHES_SSE2];
+ xmm_t input, indices;
+
+ acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+ total_packets, categories, ctx->trans_table);
+
+ for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
+ cmplt[n].count = 0;
+ index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+ }
+
+ indices = MM_LOADU((xmm_t *) &index_array[0]);
+
+ /* Check for any matches. */
+ acl_match_check_x2(0, ctx, parms, &flows, &indices,
+ xmm_match_mask64.x);
+
+ while (flows.started > 0) {
+
+ /* Gather 4 bytes of input data for each stream. */
+ input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
+ input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
+
+ /* Process the 4 bytes of input on each stream. */
+
+ input = transition2(input, flows.trans, &indices);
+ input = transition2(input, flows.trans, &indices);
+ input = transition2(input, flows.trans, &indices);
+ input = transition2(input, flows.trans, &indices);
+
+ /* Check for any matches. */
+ acl_match_check_x2(0, ctx, parms, &flows, &indices,
+ xmm_match_mask64.x);
+ }
+
+ return 0;
+}
diff --git a/lib/librte_acl/rte_acl.c b/lib/librte_acl/rte_acl.c
index a16c4a4..a9cd349 100644
--- a/lib/librte_acl/rte_acl.c
+++ b/lib/librte_acl/rte_acl.c
@@ -38,10 +38,25 @@
TAILQ_HEAD(rte_acl_list, rte_tailq_entry);
+/*
+ * If the compiler doesn't support AVX2 instructions,
+ * then the dummy one would be used instead for AVX2 classify method.
+ */
+int __attribute__ ((weak))
+rte_acl_classify_avx2(__rte_unused const struct rte_acl_ctx *ctx,
+ __rte_unused const uint8_t **data,
+ __rte_unused uint32_t *results,
+ __rte_unused uint32_t num,
+ __rte_unused uint32_t categories)
+{
+ return -ENOTSUP;
+}
+
static const rte_acl_classify_t classify_fns[] = {
[RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse,
+ [RTE_ACL_CLASSIFY_AVX2] = rte_acl_classify_avx2,
};
/* by default, use always available scalar code path. */
@@ -64,12 +79,24 @@ rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg)
return 0;
}
+/*
+ * Select highest available classify method as default one.
+ * Note that CLASSIFY_AVX2 should be set as a default only
+ * if both conditions are met:
+ * at build time compiler supports AVX2 and target cpu supports AVX2.
+ */
static void __attribute__((constructor))
rte_acl_init(void)
{
enum rte_acl_classify_alg alg = RTE_ACL_CLASSIFY_DEFAULT;
+#ifdef CC_AVX2_SUPPORT
+ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
+ alg = RTE_ACL_CLASSIFY_AVX2;
+ else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
+#else
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
+#endif
alg = RTE_ACL_CLASSIFY_SSE;
rte_acl_set_default_classify(alg);
diff --git a/lib/librte_acl/rte_acl.h b/lib/librte_acl/rte_acl.h
index 0d913ee..652a234 100644
--- a/lib/librte_acl/rte_acl.h
+++ b/lib/librte_acl/rte_acl.h
@@ -265,6 +265,8 @@ enum rte_acl_classify_alg {
RTE_ACL_CLASSIFY_DEFAULT = 0,
RTE_ACL_CLASSIFY_SCALAR = 1, /**< generic implementation. */
RTE_ACL_CLASSIFY_SSE = 2, /**< requires SSE4.1 support. */
+ RTE_ACL_CLASSIFY_AVX2 = 3, /**< requires AVX2 support. */
+ RTE_ACL_CLASSIFY_NUM /* should always be the last one. */
};
/**
--
1.8.5.3
next prev parent reply other threads:[~2015-01-20 18:41 UTC|newest]
Thread overview: 27+ messages / expand[flat|nested] mbox.gz Atom feed top
2015-01-20 18:40 [dpdk-dev] [PATCH v3 00/18] ACL: New AVX2 classify method and several other enhancements Konstantin Ananyev
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 01/18] fix fix compilation issues with RTE_LIBRTE_ACL_STANDALONE=y Konstantin Ananyev
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 02/18] app/test: few small fixes fot test_acl.c Konstantin Ananyev
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 03/18] librte_acl: make data_indexes long enough to survive idle transitions Konstantin Ananyev
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 04/18] librte_acl: remove build phase heuristsic with negative performance effect Konstantin Ananyev
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 05/18] librte_acl: fix a bug at build phase that can cause matches beeing overwirtten Konstantin Ananyev
2015-01-25 17:34 ` Neil Horman
2015-01-25 22:40 ` Ananyev, Konstantin
2015-01-26 12:08 ` Neil Horman
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 06/18] librte_acl: introduce DFA nodes compression (group64) for identical entries Konstantin Ananyev
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 07/18] librte_acl: build/gen phase - simplify the way match nodes are allocated Konstantin Ananyev
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 08/18] librte_acl: make scalar RT code to be more similar to vector one Konstantin Ananyev
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 09/18] librte_acl: a bit of RT code deduplication Konstantin Ananyev
2015-01-20 18:40 ` [dpdk-dev] [PATCH v3 10/18] EAL: introduce rte_ymm and relatives in rte_common_vect.h Konstantin Ananyev
2015-01-20 18:41 ` Konstantin Ananyev [this message]
2015-01-20 18:41 ` [dpdk-dev] [PATCH v3 12/18] test-acl: add ability to manually select RT method Konstantin Ananyev
2015-01-20 18:41 ` [dpdk-dev] [PATCH v3 13/18] librte_acl: Remove search_sse_2 and relatives Konstantin Ananyev
2015-01-20 18:41 ` [dpdk-dev] [PATCH v3 14/18] libter_acl: move lo/hi dwords shuffle out from calc_addr Konstantin Ananyev
2015-01-20 18:41 ` [dpdk-dev] [PATCH v3 15/18] libte_acl: make calc_addr a define to deduplicate the code Konstantin Ananyev
2015-01-20 18:41 ` [dpdk-dev] [PATCH v3 16/18] libte_acl: introduce max_size into rte_acl_config Konstantin Ananyev
2015-01-20 18:41 ` [dpdk-dev] [PATCH v3 17/18] libte_acl: remove unused macros Konstantin Ananyev
2015-01-20 18:41 ` [dpdk-dev] [PATCH v3 18/18] libte_acl: add some comments about ACL internal layout Konstantin Ananyev
2015-01-22 18:54 ` [dpdk-dev] [PATCH v3 00/18] ACL: New AVX2 classify method and several other enhancements Neil Horman
2015-01-22 22:10 ` Ananyev, Konstantin
2015-01-27 14:03 ` Neil Horman
2015-01-28 16:14 ` Thomas Monjalon
2015-01-30 3:12 ` Fu, JingguoX
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=1421779267-18492-12-git-send-email-konstantin.ananyev@intel.com \
--to=konstantin.ananyev@intel.com \
--cc=dev@dpdk.org \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).