From: Nicolas Chautru <nicolas.chautru@intel.com>
To: dev@dpdk.org, gakhil@marvell.com
Cc: trix@redhat.com, thomas@monjalon.net, ray.kinsella@intel.com,
bruce.richardson@intel.com, hemant.agrawal@nxp.com,
mingshan.zhang@intel.com, david.marchand@redhat.com,
Nicolas Chautru <nicolas.chautru@intel.com>
Subject: [PATCH v1 5/9] baseband/acc101: add LDPC processing
Date: Mon, 4 Apr 2022 14:13:44 -0700 [thread overview]
Message-ID: <1649106828-116338-6-git-send-email-nicolas.chautru@intel.com> (raw)
In-Reply-To: <1649106828-116338-1-git-send-email-nicolas.chautru@intel.com>
Add capabilities and function to do actual
LDPC encode and decode processing operations.
Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
---
doc/guides/bbdevs/acc101.rst | 22 +
doc/guides/bbdevs/features/acc101.ini | 8 +-
drivers/baseband/acc101/rte_acc101_pmd.c | 1737 ++++++++++++++++++++++++++++++
drivers/baseband/acc101/rte_acc101_pmd.h | 26 +
4 files changed, 1789 insertions(+), 4 deletions(-)
diff --git a/doc/guides/bbdevs/acc101.rst b/doc/guides/bbdevs/acc101.rst
index fb5f9f1..ae27bf3 100644
--- a/doc/guides/bbdevs/acc101.rst
+++ b/doc/guides/bbdevs/acc101.rst
@@ -15,12 +15,34 @@ Features
ACC101 5G/4G FEC PMD supports the following features:
+- LDPC Encode in the DL (5GNR)
+- LDPC Decode in the UL (5GNR)
- 16 VFs per PF (physical device)
- Maximum of 128 queues per VF
- PCIe Gen-3 x16 Interface
- MSI
- SR-IOV
+ACC101 5G/4G FEC PMD supports the following BBDEV capabilities:
+
+* For the LDPC encode operation:
+ - ``RTE_BBDEV_LDPC_CRC_24B_ATTACH`` : set to attach CRC24B to CB(s)
+ - ``RTE_BBDEV_LDPC_RATE_MATCH`` : if set then do not do Rate Match bypass
+ - ``RTE_BBDEV_LDPC_INTERLEAVER_BYPASS`` : if set then bypass interleaver
+
+* For the LDPC decode operation:
+ - ``RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK`` : check CRC24B from CB(s)
+ - ``RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE`` : disable early termination
+ - ``RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP`` : drops CRC24B bits appended while decoding
+ - ``RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE`` : provides an input for HARQ combining
+ - ``RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE`` : provides an input for HARQ combining
+ - ``RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE`` : HARQ memory input is internal
+ - ``RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE`` : HARQ memory output is internal
+ - ``RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS`` : HARQ memory includes the fillers bits
+ - ``RTE_BBDEV_LDPC_DEC_SCATTER_GATHER`` : supports scatter-gather for input/output data
+ - ``RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION`` : supports compression of the HARQ input/output
+ - ``RTE_BBDEV_LDPC_LLR_COMPRESSION`` : supports LLR input compression
+
Installation
------------
diff --git a/doc/guides/bbdevs/features/acc101.ini b/doc/guides/bbdevs/features/acc101.ini
index 1a62d13..4a88932 100644
--- a/doc/guides/bbdevs/features/acc101.ini
+++ b/doc/guides/bbdevs/features/acc101.ini
@@ -6,8 +6,8 @@
[Features]
Turbo Decoder (4G) = N
Turbo Encoder (4G) = N
-LDPC Decoder (5G) = N
-LDPC Encoder (5G) = N
-LLR/HARQ Compression = N
-External DDR Access = N
+LDPC Decoder (5G) = Y
+LDPC Encoder (5G) = Y
+LLR/HARQ Compression = Y
+External DDR Access = Y
HW Accelerated = Y
diff --git a/drivers/baseband/acc101/rte_acc101_pmd.c b/drivers/baseband/acc101/rte_acc101_pmd.c
index e490e97..2861907 100644
--- a/drivers/baseband/acc101/rte_acc101_pmd.c
+++ b/drivers/baseband/acc101/rte_acc101_pmd.c
@@ -762,6 +762,46 @@
{
struct acc101_device *d = dev->data->dev_private;
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
+ {
+ .type = RTE_BBDEV_OP_LDPC_ENC,
+ .cap.ldpc_enc = {
+ .capability_flags =
+ RTE_BBDEV_LDPC_RATE_MATCH |
+ RTE_BBDEV_LDPC_CRC_24B_ATTACH |
+ RTE_BBDEV_LDPC_INTERLEAVER_BYPASS,
+ .num_buffers_src =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ .num_buffers_dst =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ }
+ },
+ {
+ .type = RTE_BBDEV_OP_LDPC_DEC,
+ .cap.ldpc_dec = {
+ .capability_flags =
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
+#ifdef ACC101_EXT_MEM
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE |
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE |
+#endif
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
+ RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS |
+ RTE_BBDEV_LDPC_DECODE_BYPASS |
+ RTE_BBDEV_LDPC_DEC_SCATTER_GATHER |
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION |
+ RTE_BBDEV_LDPC_LLR_COMPRESSION,
+ .llr_size = 8,
+ .llr_decimals = 1,
+ .num_buffers_src =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ .num_buffers_hard_out =
+ RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
+ .num_buffers_soft_out = 0,
+ }
+ },
RTE_BBDEV_END_OF_CAPABILITIES_LIST()
};
@@ -796,7 +836,11 @@
dev_info->cpu_flag_reqs = NULL;
dev_info->min_alignment = 64;
dev_info->capabilities = bbdev_capabilities;
+#ifdef ACC101_EXT_MEM
+ dev_info->harq_buffer_size = d->ddr_size;
+#else
dev_info->harq_buffer_size = 0;
+#endif
}
static const struct rte_bbdev_ops acc101_bbdev_ops = {
@@ -824,6 +868,1695 @@
{.device_id = 0},
};
+/* Read flag value 0/1 from bitmap */
+static inline bool
+check_bit(uint32_t bitmap, uint32_t bitmask)
+{
+ return bitmap & bitmask;
+}
+
+static inline char *
+mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
+{
+ if (unlikely(len > rte_pktmbuf_tailroom(m)))
+ return NULL;
+
+ char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
+ m->data_len = (uint16_t)(m->data_len + len);
+ m_head->pkt_len = (m_head->pkt_len + len);
+ return tail;
+}
+
+/* Compute value of k0.
+ * Based on 3GPP 38.212 Table 5.4.2.1-2
+ * Starting position of different redundancy versions, k0
+ */
+static inline uint16_t
+get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
+{
+ if (rv_index == 0)
+ return 0;
+ uint16_t n = (bg == 1 ? ACC101_N_ZC_1 : ACC101_N_ZC_2) * z_c;
+ if (n_cb == n) {
+ if (rv_index == 1)
+ return (bg == 1 ? ACC101_K0_1_1 : ACC101_K0_1_2) * z_c;
+ else if (rv_index == 2)
+ return (bg == 1 ? ACC101_K0_2_1 : ACC101_K0_2_2) * z_c;
+ else
+ return (bg == 1 ? ACC101_K0_3_1 : ACC101_K0_3_2) * z_c;
+ }
+ /* LBRM case - includes a division by N */
+ if (unlikely(z_c == 0))
+ return 0;
+ if (rv_index == 1)
+ return (((bg == 1 ? ACC101_K0_1_1 : ACC101_K0_1_2) * n_cb)
+ / n) * z_c;
+ else if (rv_index == 2)
+ return (((bg == 1 ? ACC101_K0_2_1 : ACC101_K0_2_2) * n_cb)
+ / n) * z_c;
+ else
+ return (((bg == 1 ? ACC101_K0_3_1 : ACC101_K0_3_2) * n_cb)
+ / n) * z_c;
+}
+
+/* Fill in a frame control word for LDPC encoding. */
+static inline void
+acc101_fcw_le_fill(const struct rte_bbdev_enc_op *op,
+ struct acc101_fcw_le *fcw, int num_cb, uint32_t default_e)
+{
+ fcw->qm = op->ldpc_enc.q_m;
+ fcw->nfiller = op->ldpc_enc.n_filler;
+ fcw->BG = (op->ldpc_enc.basegraph - 1);
+ fcw->Zc = op->ldpc_enc.z_c;
+ fcw->ncb = op->ldpc_enc.n_cb;
+ fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_enc.basegraph,
+ op->ldpc_enc.rv_index);
+ fcw->rm_e = (default_e == 0) ? op->ldpc_enc.cb_params.e : default_e;
+ fcw->crc_select = check_bit(op->ldpc_enc.op_flags,
+ RTE_BBDEV_LDPC_CRC_24B_ATTACH);
+ fcw->bypass_intlv = check_bit(op->ldpc_enc.op_flags,
+ RTE_BBDEV_LDPC_INTERLEAVER_BYPASS);
+ fcw->mcb_count = num_cb;
+}
+
+/* Convert offset to harq index for harq_layout structure */
+static inline uint32_t hq_index(uint32_t offset)
+{
+ return (offset >> ACC101_HARQ_OFFSET_SHIFT) & ACC101_HARQ_OFFSET_MASK;
+}
+
+/* Fill in a frame control word for LDPC decoding. */
+static inline void
+acc101_fcw_ld_fill(struct rte_bbdev_dec_op *op, struct acc101_fcw_ld *fcw,
+ union acc101_harq_layout_data *harq_layout)
+{
+ uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset;
+ uint32_t harq_index;
+ uint32_t l;
+
+ fcw->qm = op->ldpc_dec.q_m;
+ fcw->nfiller = op->ldpc_dec.n_filler;
+ fcw->BG = (op->ldpc_dec.basegraph - 1);
+ fcw->Zc = op->ldpc_dec.z_c;
+ fcw->ncb = op->ldpc_dec.n_cb;
+ fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_dec.basegraph,
+ op->ldpc_dec.rv_index);
+ if (op->ldpc_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
+ fcw->rm_e = op->ldpc_dec.cb_params.e;
+ else
+ fcw->rm_e = (op->ldpc_dec.tb_params.r <
+ op->ldpc_dec.tb_params.cab) ?
+ op->ldpc_dec.tb_params.ea :
+ op->ldpc_dec.tb_params.eb;
+
+ if (unlikely(check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE) &&
+ (op->ldpc_dec.harq_combined_input.length == 0))) {
+ rte_bbdev_log(WARNING, "Null HARQ input size provided");
+ /* Disable HARQ input in that case to carry forward */
+ op->ldpc_dec.op_flags ^= RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE;
+ }
+
+ fcw->hcin_en = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
+ fcw->hcout_en = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
+ fcw->crc_select = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
+ fcw->bypass_dec = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_DECODE_BYPASS);
+ fcw->bypass_intlv = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS);
+ if (op->ldpc_dec.q_m == 1) {
+ fcw->bypass_intlv = 1;
+ fcw->qm = 2;
+ }
+ fcw->hcin_decomp_mode = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
+ fcw->hcout_comp_mode = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
+ fcw->llr_pack_mode = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_LLR_COMPRESSION);
+ harq_index = hq_index(op->ldpc_dec.harq_combined_output.offset);
+ if (fcw->hcin_en > 0) {
+ harq_in_length = op->ldpc_dec.harq_combined_input.length;
+ if (fcw->hcin_decomp_mode > 0)
+ harq_in_length = harq_in_length * 8 / 6;
+ harq_in_length = RTE_MIN(harq_in_length, op->ldpc_dec.n_cb
+ - op->ldpc_dec.n_filler);
+ /* Alignment on next 64B - Already enforced from HC output */
+ harq_in_length = RTE_ALIGN_FLOOR(harq_in_length, 64);
+ fcw->hcin_size0 = harq_in_length;
+ fcw->hcin_offset = 0;
+ fcw->hcin_size1 = 0;
+ } else {
+ fcw->hcin_size0 = 0;
+ fcw->hcin_offset = 0;
+ fcw->hcin_size1 = 0;
+ }
+
+ fcw->itmax = op->ldpc_dec.iter_max;
+ fcw->itstop = check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
+ fcw->synd_precoder = fcw->itstop;
+ /*
+ * These are all implicitly set
+ * fcw->synd_post = 0;
+ * fcw->so_en = 0;
+ * fcw->so_bypass_rm = 0;
+ * fcw->so_bypass_intlv = 0;
+ * fcw->dec_convllr = 0;
+ * fcw->hcout_convllr = 0;
+ * fcw->hcout_size1 = 0;
+ * fcw->so_it = 0;
+ * fcw->hcout_offset = 0;
+ * fcw->negstop_th = 0;
+ * fcw->negstop_it = 0;
+ * fcw->negstop_en = 0;
+ * fcw->gain_i = 1;
+ * fcw->gain_h = 1;
+ */
+ if (fcw->hcout_en > 0) {
+ parity_offset = (op->ldpc_dec.basegraph == 1 ? 20 : 8)
+ * op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
+ k0_p = (fcw->k0 > parity_offset) ?
+ fcw->k0 - op->ldpc_dec.n_filler : fcw->k0;
+ ncb_p = fcw->ncb - op->ldpc_dec.n_filler;
+ l = RTE_MIN(k0_p + fcw->rm_e, INT16_MAX);
+ harq_out_length = (uint16_t) fcw->hcin_size0;
+ harq_out_length = RTE_MAX(harq_out_length, l);
+ /* Cannot exceed the pruned Ncb circular buffer */
+ harq_out_length = RTE_MIN(harq_out_length, ncb_p);
+ /* Alignment on next 64B */
+ harq_out_length = RTE_ALIGN_CEIL(harq_out_length, 64);
+ fcw->hcout_size0 = harq_out_length;
+ fcw->hcout_size1 = 0;
+ fcw->hcout_offset = 0;
+ harq_layout[harq_index].offset = fcw->hcout_offset;
+ harq_layout[harq_index].size0 = fcw->hcout_size0;
+ } else {
+ fcw->hcout_size0 = 0;
+ fcw->hcout_size1 = 0;
+ fcw->hcout_offset = 0;
+ }
+}
+
+/**
+ * Fills descriptor with data pointers of one block type.
+ *
+ * @param desc
+ * Pointer to DMA descriptor.
+ * @param input
+ * Pointer to pointer to input data which will be encoded. It can be changed
+ * and points to next segment in scatter-gather case.
+ * @param offset
+ * Input offset in rte_mbuf structure. It is used for calculating the point
+ * where data is starting.
+ * @param cb_len
+ * Length of currently processed Code Block
+ * @param seg_total_left
+ * It indicates how many bytes still left in segment (mbuf) for further
+ * processing.
+ * @param op_flags
+ * Store information about device capabilities
+ * @param next_triplet
+ * Index for ACC101 DMA Descriptor triplet
+ * @param scattergather
+ * Flag to support scatter-gather for the mbuf
+ *
+ * @return
+ * Returns index of next triplet on success, other value if lengths of
+ * pkt and processed cb do not match.
+ *
+ */
+static inline int
+acc101_dma_fill_blk_type_in(struct acc101_dma_req_desc *desc,
+ struct rte_mbuf **input, uint32_t *offset, uint32_t cb_len,
+ uint32_t *seg_total_left, int next_triplet,
+ bool scattergather)
+{
+ uint32_t part_len;
+ struct rte_mbuf *m = *input;
+
+ if (scattergather)
+ part_len = (*seg_total_left < cb_len) ?
+ *seg_total_left : cb_len;
+ else
+ part_len = cb_len;
+ cb_len -= part_len;
+ *seg_total_left -= part_len;
+
+ desc->data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(m, *offset);
+ desc->data_ptrs[next_triplet].blen = part_len;
+ desc->data_ptrs[next_triplet].blkid = ACC101_DMA_BLKID_IN;
+ desc->data_ptrs[next_triplet].last = 0;
+ desc->data_ptrs[next_triplet].dma_ext = 0;
+ *offset += part_len;
+ next_triplet++;
+
+ while (cb_len > 0) {
+ if (next_triplet < ACC101_DMA_MAX_NUM_POINTERS_IN && m->next != NULL) {
+
+ m = m->next;
+ *seg_total_left = rte_pktmbuf_data_len(m);
+ part_len = (*seg_total_left < cb_len) ?
+ *seg_total_left :
+ cb_len;
+ desc->data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(m, 0);
+ desc->data_ptrs[next_triplet].blen = part_len;
+ desc->data_ptrs[next_triplet].blkid =
+ ACC101_DMA_BLKID_IN;
+ desc->data_ptrs[next_triplet].last = 0;
+ desc->data_ptrs[next_triplet].dma_ext = 0;
+ cb_len -= part_len;
+ *seg_total_left -= part_len;
+ /* Initializing offset for next segment (mbuf) */
+ *offset = part_len;
+ next_triplet++;
+ } else {
+ rte_bbdev_log(ERR,
+ "Some data still left for processing: "
+ "data_left: %u, next_triplet: %u, next_mbuf: %p",
+ cb_len, next_triplet, m->next);
+ return -EINVAL;
+ }
+ }
+ /* Storing new mbuf as it could be changed in scatter-gather case*/
+ *input = m;
+
+ return next_triplet;
+}
+
+/* Fills descriptor with data pointers of one block type.
+ * Returns index of next triplet on success, other value if lengths of
+ * output data and processed mbuf do not match.
+ */
+static inline int
+acc101_dma_fill_blk_type_out(struct acc101_dma_req_desc *desc,
+ struct rte_mbuf *output, uint32_t out_offset,
+ uint32_t output_len, int next_triplet, int blk_id)
+{
+ desc->data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(output, out_offset);
+ desc->data_ptrs[next_triplet].blen = output_len;
+ desc->data_ptrs[next_triplet].blkid = blk_id;
+ desc->data_ptrs[next_triplet].last = 0;
+ desc->data_ptrs[next_triplet].dma_ext = 0;
+ next_triplet++;
+
+ return next_triplet;
+}
+
+static inline void
+acc101_header_init(struct acc101_dma_req_desc *desc)
+{
+ desc->word0 = ACC101_DMA_DESC_TYPE;
+ desc->word1 = 0; /**< Timestamp could be disabled */
+ desc->word2 = 0;
+ desc->word3 = 0;
+ desc->numCBs = 1;
+}
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+/* Check if any input data is unexpectedly left for processing */
+static inline int
+check_mbuf_total_left(uint32_t mbuf_total_left)
+{
+ if (mbuf_total_left == 0)
+ return 0;
+ rte_bbdev_log(ERR,
+ "Some date still left for processing: mbuf_total_left = %u",
+ mbuf_total_left);
+ return -EINVAL;
+}
+#endif
+
+static inline int
+acc101_dma_desc_le_fill(struct rte_bbdev_enc_op *op,
+ struct acc101_dma_req_desc *desc, struct rte_mbuf **input,
+ struct rte_mbuf *output, uint32_t *in_offset,
+ uint32_t *out_offset, uint32_t *out_length,
+ uint32_t *mbuf_total_left, uint32_t *seg_total_left)
+{
+ int next_triplet = 1; /* FCW already done */
+ uint16_t K, in_length_in_bits, in_length_in_bytes;
+ struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
+
+ acc101_header_init(desc);
+
+ K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
+ in_length_in_bits = K - enc->n_filler;
+ if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH)
+ in_length_in_bits -= 24;
+ in_length_in_bytes = in_length_in_bits >> 3;
+
+ if (unlikely((*mbuf_total_left == 0) ||
+ (*mbuf_total_left < in_length_in_bytes))) {
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+ *mbuf_total_left, in_length_in_bytes);
+ return -1;
+ }
+
+ next_triplet = acc101_dma_fill_blk_type_in(desc, input, in_offset,
+ in_length_in_bytes,
+ seg_total_left, next_triplet,
+ false);
+ if (unlikely(next_triplet < 0)) {
+ rte_bbdev_log(ERR,
+ "Mismatch between data to process and mbuf data length in bbdev_op: %p",
+ op);
+ return -1;
+ }
+ desc->data_ptrs[next_triplet - 1].last = 1;
+ desc->m2dlen = next_triplet;
+ *mbuf_total_left -= in_length_in_bytes;
+
+ /* Set output length */
+ /* Integer round up division by 8 */
+ *out_length = (enc->cb_params.e + 7) >> 3;
+
+ next_triplet = acc101_dma_fill_blk_type_out(desc, output, *out_offset,
+ *out_length, next_triplet, ACC101_DMA_BLKID_OUT_ENC);
+ op->ldpc_enc.output.length += *out_length;
+ *out_offset += *out_length;
+ desc->data_ptrs[next_triplet - 1].last = 1;
+ desc->data_ptrs[next_triplet - 1].dma_ext = 0;
+ desc->d2mlen = next_triplet - desc->m2dlen;
+
+ desc->op_addr = op;
+
+ return 0;
+}
+
+static inline int
+acc101_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
+ struct acc101_dma_req_desc *desc,
+ struct rte_mbuf **input, struct rte_mbuf *h_output,
+ uint32_t *in_offset, uint32_t *h_out_offset,
+ uint32_t *h_out_length, uint32_t *mbuf_total_left,
+ uint32_t *seg_total_left,
+ struct acc101_fcw_ld *fcw)
+{
+ struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
+ int next_triplet = 1; /* FCW already done */
+ uint32_t input_length;
+ uint16_t output_length, crc24_overlap = 0;
+ uint16_t sys_cols, K, h_p_size, h_np_size;
+ bool h_comp = check_bit(dec->op_flags,
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
+
+ acc101_header_init(desc);
+
+ if (check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
+ crc24_overlap = 24;
+
+ /* Compute some LDPC BG lengths */
+ input_length = fcw->rm_e;
+ if (check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_LLR_COMPRESSION))
+ input_length = (input_length * 3 + 3) / 4;
+ sys_cols = (dec->basegraph == 1) ? 22 : 10;
+ K = sys_cols * dec->z_c;
+ output_length = K - dec->n_filler - crc24_overlap;
+
+ if (unlikely((*mbuf_total_left == 0) ||
+ (*mbuf_total_left < input_length))) {
+ rte_bbdev_log(ERR,
+ "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
+ *mbuf_total_left, input_length);
+ return -1;
+ }
+
+ next_triplet = acc101_dma_fill_blk_type_in(desc, input,
+ in_offset, input_length,
+ seg_total_left, next_triplet,
+ check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_DEC_SCATTER_GATHER));
+
+ if (unlikely(next_triplet < 0)) {
+ rte_bbdev_log(ERR,
+ "Mismatch between data to process and mbuf data length in bbdev_op: %p",
+ op);
+ return -1;
+ }
+
+ if (check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
+ h_p_size = fcw->hcin_size0 + fcw->hcin_size1;
+ if (h_comp)
+ h_p_size = (h_p_size * 3 + 3) / 4;
+ desc->data_ptrs[next_triplet].address =
+ dec->harq_combined_input.offset;
+ desc->data_ptrs[next_triplet].blen = h_p_size;
+ desc->data_ptrs[next_triplet].blkid = ACC101_DMA_BLKID_IN_HARQ;
+ desc->data_ptrs[next_triplet].dma_ext = 1;
+#ifndef ACC101_EXT_MEM
+ acc101_dma_fill_blk_type_out(
+ desc,
+ op->ldpc_dec.harq_combined_input.data,
+ op->ldpc_dec.harq_combined_input.offset,
+ h_p_size,
+ next_triplet,
+ ACC101_DMA_BLKID_IN_HARQ);
+#endif
+ next_triplet++;
+ }
+
+ desc->data_ptrs[next_triplet - 1].last = 1;
+ desc->m2dlen = next_triplet;
+ *mbuf_total_left -= input_length;
+
+ next_triplet = acc101_dma_fill_blk_type_out(desc, h_output,
+ *h_out_offset, output_length >> 3, next_triplet,
+ ACC101_DMA_BLKID_OUT_HARD);
+
+ if (check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
+ /* Pruned size of the HARQ */
+ h_p_size = fcw->hcout_size0 + fcw->hcout_size1;
+ /* Non-Pruned size of the HARQ */
+ h_np_size = fcw->hcout_offset > 0 ?
+ fcw->hcout_offset + fcw->hcout_size1 :
+ h_p_size;
+ if (h_comp) {
+ h_np_size = (h_np_size * 3 + 3) / 4;
+ h_p_size = (h_p_size * 3 + 3) / 4;
+ }
+ dec->harq_combined_output.length = h_np_size;
+ desc->data_ptrs[next_triplet].address =
+ dec->harq_combined_output.offset;
+ desc->data_ptrs[next_triplet].blen = h_p_size;
+ desc->data_ptrs[next_triplet].blkid = ACC101_DMA_BLKID_OUT_HARQ;
+ desc->data_ptrs[next_triplet].dma_ext = 1;
+#ifndef ACC101_EXT_MEM
+ acc101_dma_fill_blk_type_out(
+ desc,
+ dec->harq_combined_output.data,
+ dec->harq_combined_output.offset,
+ h_p_size,
+ next_triplet,
+ ACC101_DMA_BLKID_OUT_HARQ);
+#endif
+ next_triplet++;
+ }
+
+ *h_out_length = output_length >> 3;
+ dec->hard_output.length += *h_out_length;
+ *h_out_offset += *h_out_length;
+ desc->data_ptrs[next_triplet - 1].last = 1;
+ desc->d2mlen = next_triplet - desc->m2dlen;
+
+ desc->op_addr = op;
+
+ return 0;
+}
+
+static inline void
+acc101_dma_desc_ld_update(struct rte_bbdev_dec_op *op,
+ struct acc101_dma_req_desc *desc,
+ struct rte_mbuf *input, struct rte_mbuf *h_output,
+ uint32_t *in_offset, uint32_t *h_out_offset,
+ uint32_t *h_out_length,
+ union acc101_harq_layout_data *harq_layout)
+{
+ int next_triplet = 1; /* FCW already done */
+ desc->data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(input, *in_offset);
+ next_triplet++;
+
+ if (check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
+ struct rte_bbdev_op_data hi = op->ldpc_dec.harq_combined_input;
+ desc->data_ptrs[next_triplet].address = hi.offset;
+#ifndef ACC101_EXT_MEM
+ desc->data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(hi.data, hi.offset);
+#endif
+ next_triplet++;
+ }
+
+ desc->data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(h_output, *h_out_offset);
+ *h_out_length = desc->data_ptrs[next_triplet].blen;
+ next_triplet++;
+
+ if (check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
+ desc->data_ptrs[next_triplet].address =
+ op->ldpc_dec.harq_combined_output.offset;
+ /* Adjust based on previous operation */
+ struct rte_bbdev_dec_op *prev_op = desc->op_addr;
+ op->ldpc_dec.harq_combined_output.length =
+ prev_op->ldpc_dec.harq_combined_output.length;
+ uint32_t harq_idx = hq_index(
+ op->ldpc_dec.harq_combined_output.offset);
+ uint32_t prev_harq_idx = hq_index(
+ prev_op->ldpc_dec.harq_combined_output.offset);
+ harq_layout[harq_idx].val = harq_layout[prev_harq_idx].val;
+#ifndef ACC101_EXT_MEM
+ struct rte_bbdev_op_data ho =
+ op->ldpc_dec.harq_combined_output;
+ desc->data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(ho.data, ho.offset);
+#endif
+ next_triplet++;
+ }
+
+ op->ldpc_dec.hard_output.length += *h_out_length;
+ desc->op_addr = op;
+}
+
+
+/* Enqueue a number of operations to HW and update software rings */
+static inline void
+acc101_dma_enqueue(struct acc101_queue *q, uint16_t n,
+ struct rte_bbdev_stats *queue_stats)
+{
+ union acc101_enqueue_reg_fmt enq_req;
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ uint64_t start_time = 0;
+ queue_stats->acc_offload_cycles = 0;
+#else
+ RTE_SET_USED(queue_stats);
+#endif
+
+ enq_req.val = 0;
+ /* Setting offset, 100b for 256 DMA Desc */
+ enq_req.addr_offset = ACC101_DESC_OFFSET;
+
+ /* Split ops into batches */
+ do {
+ union acc101_dma_desc *desc;
+ uint16_t enq_batch_size;
+ uint64_t offset;
+ rte_iova_t req_elem_addr;
+
+ enq_batch_size = RTE_MIN(n, MAX_ENQ_BATCH_SIZE);
+
+ /* Set flag on last descriptor in a batch */
+ desc = q->ring_addr + ((q->sw_ring_head + enq_batch_size - 1) &
+ q->sw_ring_wrap_mask);
+ desc->req.last_desc_in_batch = 1;
+
+ /* Calculate the 1st descriptor's address */
+ offset = ((q->sw_ring_head & q->sw_ring_wrap_mask) *
+ sizeof(union acc101_dma_desc));
+ req_elem_addr = q->ring_addr_iova + offset;
+
+ /* Fill enqueue struct */
+ enq_req.num_elem = enq_batch_size;
+ /* low 6 bits are not needed */
+ enq_req.req_elem_addr = (uint32_t)(req_elem_addr >> 6);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ rte_memdump(stderr, "Req sdone", desc, sizeof(*desc));
+#endif
+ rte_bbdev_log_debug(
+ "Enqueue %u reqs (phys %#"PRIx64") to reg %p",
+ enq_batch_size,
+ req_elem_addr,
+ (void *)q->mmio_reg_enqueue);
+
+ rte_wmb();
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ /* Start time measurement for enqueue function offload. */
+ start_time = rte_rdtsc_precise();
+#endif
+ rte_bbdev_log(DEBUG, "Debug : MMIO Enqueue");
+ mmio_write(q->mmio_reg_enqueue, enq_req.val);
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+ queue_stats->acc_offload_cycles +=
+ rte_rdtsc_precise() - start_time;
+#endif
+
+ q->aq_enqueued++;
+ q->sw_ring_head += enq_batch_size;
+ n -= enq_batch_size;
+
+ } while (n);
+
+
+}
+
+/* Enqueue one encode operations for ACC101 device in CB mode
+ * multiplexed on the same descriptor
+ */
+static inline int
+enqueue_ldpc_enc_n_op_cb(struct acc101_queue *q, struct rte_bbdev_enc_op **ops,
+ uint16_t total_enqueued_descs, int16_t num)
+{
+ union acc101_dma_desc *desc = NULL;
+ uint32_t out_length;
+ struct rte_mbuf *output_head, *output;
+ int i, next_triplet;
+ uint16_t in_length_in_bytes;
+ struct rte_bbdev_op_ldpc_enc *enc = &ops[0]->ldpc_enc;
+
+ uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_descs)
+ & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + desc_idx;
+ acc101_fcw_le_fill(ops[0], &desc->req.fcw_le, num, 0);
+
+ /** This could be done at polling */
+ acc101_header_init(&desc->req);
+ desc->req.numCBs = num;
+
+ in_length_in_bytes = ops[0]->ldpc_enc.input.data->data_len;
+ out_length = (enc->cb_params.e + 7) >> 3;
+ desc->req.m2dlen = 1 + num;
+ desc->req.d2mlen = num;
+ next_triplet = 1;
+
+ for (i = 0; i < num; i++) {
+ desc->req.data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(ops[i]->ldpc_enc.input.data, 0);
+ desc->req.data_ptrs[next_triplet].blen = in_length_in_bytes;
+ next_triplet++;
+ desc->req.data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(
+ ops[i]->ldpc_enc.output.data, 0);
+ desc->req.data_ptrs[next_triplet].blen = out_length;
+ next_triplet++;
+ ops[i]->ldpc_enc.output.length = out_length;
+ output_head = output = ops[i]->ldpc_enc.output.data;
+ mbuf_append(output_head, output, out_length);
+ output->data_len = out_length;
+ }
+
+ desc->req.op_addr = ops[0];
+ /* Keep track of pointers even when multiplexed in single descriptor */
+ struct acc101_ptrs *context_ptrs = q->companion_ring_addr + desc_idx;
+ for (i = 0; i < num; i++)
+ context_ptrs->ptr[i].op_addr = ops[i];
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ rte_memdump(stderr, "FCW", &desc->req.fcw_le,
+ sizeof(desc->req.fcw_le) - 8);
+ rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
+#endif
+
+ /* One CB (one op) was successfully prepared to enqueue */
+ return num;
+}
+
+/* Enqueue one encode operations for ACC101 device for a partial TB
+ * all codes blocks have same configuration multiplexed on the same descriptor
+ */
+static inline void
+enqueue_ldpc_enc_part_tb(struct acc101_queue *q, struct rte_bbdev_enc_op *op,
+ uint16_t total_enqueued_descs, int16_t num_cbs, uint32_t e,
+ uint16_t in_len_B, uint32_t out_len_B, uint32_t *in_offset,
+ uint32_t *out_offset)
+{
+
+ union acc101_dma_desc *desc = NULL;
+ struct rte_mbuf *output_head, *output;
+ int i, next_triplet;
+ struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
+
+
+ uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_descs)
+ & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + desc_idx;
+ acc101_fcw_le_fill(op, &desc->req.fcw_le, num_cbs, e);
+
+ /** This could be done at polling */
+ acc101_header_init(&desc->req);
+ desc->req.numCBs = num_cbs;
+
+ desc->req.m2dlen = 1 + num_cbs;
+ desc->req.d2mlen = num_cbs;
+ next_triplet = 1;
+
+ for (i = 0; i < num_cbs; i++) {
+ desc->req.data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(enc->input.data,
+ *in_offset);
+ *in_offset += in_len_B;
+ desc->req.data_ptrs[next_triplet].blen = in_len_B;
+ next_triplet++;
+ desc->req.data_ptrs[next_triplet].address =
+ rte_pktmbuf_iova_offset(
+ enc->output.data, *out_offset);
+ *out_offset += out_len_B;
+ desc->req.data_ptrs[next_triplet].blen = out_len_B;
+ next_triplet++;
+ enc->output.length += out_len_B;
+ output_head = output = enc->output.data;
+ mbuf_append(output_head, output, out_len_B);
+ }
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ rte_memdump(stderr, "FCW", &desc->req.fcw_le,
+ sizeof(desc->req.fcw_le) - 8);
+ rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
+#endif
+
+}
+
+/* Enqueue one encode operations for ACC101 device in CB mode */
+static inline int
+enqueue_ldpc_enc_one_op_cb(struct acc101_queue *q, struct rte_bbdev_enc_op *op,
+ uint16_t total_enqueued_cbs)
+{
+ union acc101_dma_desc *desc = NULL;
+ int ret;
+ uint32_t in_offset, out_offset, out_length, mbuf_total_left,
+ seg_total_left;
+ struct rte_mbuf *input, *output_head, *output;
+
+ uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
+ & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + desc_idx;
+ acc101_fcw_le_fill(op, &desc->req.fcw_le, 1, 0);
+
+ input = op->ldpc_enc.input.data;
+ output_head = output = op->ldpc_enc.output.data;
+ in_offset = op->ldpc_enc.input.offset;
+ out_offset = op->ldpc_enc.output.offset;
+ out_length = 0;
+ mbuf_total_left = op->ldpc_enc.input.length;
+ seg_total_left = rte_pktmbuf_data_len(op->ldpc_enc.input.data)
+ - in_offset;
+
+ ret = acc101_dma_desc_le_fill(op, &desc->req, &input, output,
+ &in_offset, &out_offset, &out_length, &mbuf_total_left,
+ &seg_total_left);
+
+ if (unlikely(ret < 0))
+ return ret;
+
+ mbuf_append(output_head, output, out_length);
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ rte_memdump(stderr, "FCW", &desc->req.fcw_le,
+ sizeof(desc->req.fcw_le) - 8);
+ rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
+
+ if (check_mbuf_total_left(mbuf_total_left) != 0)
+ return -EINVAL;
+#endif
+ /* One CB (one op) was successfully prepared to enqueue */
+ return 1;
+}
+
+/* Enqueue one encode operations for ACC101 device in TB mode.
+ * returns the number of descs used
+ */
+static inline int
+enqueue_ldpc_enc_one_op_tb(struct acc101_queue *q, struct rte_bbdev_enc_op *op,
+ uint16_t enq_descs, uint8_t cbs_in_tb)
+{
+ uint8_t num_a, num_b;
+ uint16_t desc_idx;
+ uint8_t r = op->ldpc_enc.tb_params.r;
+ uint8_t cab = op->ldpc_enc.tb_params.cab;
+ union acc101_dma_desc *desc;
+ uint16_t init_enq_descs = enq_descs;
+ uint16_t input_len_B = ((op->ldpc_enc.basegraph == 1 ? 22 : 10) *
+ op->ldpc_enc.z_c - op->ldpc_enc.n_filler) >> 3;
+ if (check_bit(op->ldpc_enc.op_flags, RTE_BBDEV_LDPC_CRC_24B_ATTACH))
+ input_len_B -= 3;
+
+ if (r < cab) {
+ num_a = cab - r;
+ num_b = cbs_in_tb - cab;
+ } else {
+ num_a = 0;
+ num_b = cbs_in_tb - r;
+ }
+ uint32_t in_offset = 0, out_offset = 0;
+
+ while (num_a > 0) {
+ uint32_t e = op->ldpc_enc.tb_params.ea;
+ uint32_t out_len_B = (e + 7) >> 3;
+ uint8_t enq = RTE_MIN(num_a, ACC101_MUX_5GDL_DESC);
+ num_a -= enq;
+ enqueue_ldpc_enc_part_tb(q, op, enq_descs, enq, e, input_len_B,
+ out_len_B, &in_offset, &out_offset);
+ enq_descs++;
+ }
+ while (num_b > 0) {
+ uint32_t e = op->ldpc_enc.tb_params.eb;
+ uint32_t out_len_B = (e + 7) >> 3;
+ uint8_t enq = RTE_MIN(num_b, ACC101_MUX_5GDL_DESC);
+ num_b -= enq;
+ enqueue_ldpc_enc_part_tb(q, op, enq_descs, enq, e, input_len_B,
+ out_len_B, &in_offset, &out_offset);
+ enq_descs++;
+ }
+
+ uint16_t return_descs = enq_descs - init_enq_descs;
+ /* Keep total number of CBs in first TB */
+ desc_idx = ((q->sw_ring_head + init_enq_descs)
+ & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + desc_idx;
+ desc->req.cbs_in_tb = return_descs; /** Actual number of descriptors */
+ desc->req.op_addr = op;
+
+ /* Set SDone on last CB descriptor for TB mode. */
+ desc_idx = ((q->sw_ring_head + enq_descs - 1)
+ & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + desc_idx;
+ desc->req.sdone_enable = 1;
+ desc->req.irq_enable = q->irq_enable;
+ desc->req.op_addr = op;
+ return return_descs;
+}
+
+/** Enqueue one decode operations for ACC101 device in CB mode */
+static inline int
+enqueue_ldpc_dec_one_op_cb(struct acc101_queue *q, struct rte_bbdev_dec_op *op,
+ uint16_t total_enqueued_cbs, bool same_op,
+ struct rte_bbdev_queue_data *q_data)
+{
+ RTE_SET_USED(q_data);
+ int ret;
+
+ union acc101_dma_desc *desc;
+ uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
+ & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + desc_idx;
+ struct rte_mbuf *input, *h_output_head, *h_output;
+ uint32_t in_offset, h_out_offset, mbuf_total_left, h_out_length = 0;
+ input = op->ldpc_dec.input.data;
+ h_output_head = h_output = op->ldpc_dec.hard_output.data;
+ in_offset = op->ldpc_dec.input.offset;
+ h_out_offset = op->ldpc_dec.hard_output.offset;
+ mbuf_total_left = op->ldpc_dec.input.length;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (unlikely(input == NULL)) {
+ rte_bbdev_log(ERR, "Invalid mbuf pointer");
+ return -EFAULT;
+ }
+#endif
+ union acc101_harq_layout_data *harq_layout = q->d->harq_layout;
+
+ if (same_op) {
+ union acc101_dma_desc *prev_desc;
+ desc_idx = ((q->sw_ring_head + total_enqueued_cbs - 1)
+ & q->sw_ring_wrap_mask);
+ prev_desc = q->ring_addr + desc_idx;
+ uint8_t *prev_ptr = (uint8_t *) prev_desc;
+ uint8_t *new_ptr = (uint8_t *) desc;
+ /* Copy first 4 words and BDESCs */
+ rte_memcpy(new_ptr, prev_ptr, ACC101_5GUL_SIZE_0);
+ rte_memcpy(new_ptr + ACC101_5GUL_OFFSET_0,
+ prev_ptr + ACC101_5GUL_OFFSET_0,
+ ACC101_5GUL_SIZE_1);
+ desc->req.op_addr = prev_desc->req.op_addr;
+ /* Copy FCW */
+ rte_memcpy(new_ptr + ACC101_DESC_FCW_OFFSET,
+ prev_ptr + ACC101_DESC_FCW_OFFSET,
+ ACC101_FCW_LD_BLEN);
+ acc101_dma_desc_ld_update(op, &desc->req, input, h_output,
+ &in_offset, &h_out_offset,
+ &h_out_length, harq_layout);
+ } else {
+ struct acc101_fcw_ld *fcw;
+ uint32_t seg_total_left;
+ fcw = &desc->req.fcw_ld;
+ acc101_fcw_ld_fill(op, fcw, harq_layout);
+
+ /* Special handling when using mbuf or not */
+ if (check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_DEC_SCATTER_GATHER))
+ seg_total_left = rte_pktmbuf_data_len(input)
+ - in_offset;
+ else
+ seg_total_left = fcw->rm_e;
+
+ ret = acc101_dma_desc_ld_fill(op, &desc->req, &input, h_output,
+ &in_offset, &h_out_offset,
+ &h_out_length, &mbuf_total_left,
+ &seg_total_left, fcw);
+ if (unlikely(ret < 0))
+ return ret;
+ }
+
+ /* Hard output */
+ mbuf_append(h_output_head, h_output, h_out_length);
+#ifndef ACC101_EXT_MEM
+ if (op->ldpc_dec.harq_combined_output.length > 0) {
+ /* Push the HARQ output into host memory */
+ struct rte_mbuf *hq_output_head, *hq_output;
+ hq_output_head = op->ldpc_dec.harq_combined_output.data;
+ hq_output = op->ldpc_dec.harq_combined_output.data;
+ mbuf_append(hq_output_head, hq_output,
+ op->ldpc_dec.harq_combined_output.length);
+ }
+#endif
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ rte_memdump(stderr, "FCW", &desc->req.fcw_ld,
+ sizeof(desc->req.fcw_ld));
+ rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
+#endif
+
+ /* One CB (one op) was successfully prepared to enqueue */
+ return 1;
+}
+
+
+/* Enqueue one decode operations for ACC101 device in TB mode */
+static inline int
+enqueue_ldpc_dec_one_op_tb(struct acc101_queue *q, struct rte_bbdev_dec_op *op,
+ uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
+{
+ union acc101_dma_desc *desc = NULL;
+ union acc101_dma_desc *desc_first = NULL;
+ int ret;
+ uint8_t r, c;
+ uint32_t in_offset, h_out_offset,
+ h_out_length, mbuf_total_left, seg_total_left;
+ struct rte_mbuf *input, *h_output_head, *h_output;
+ uint16_t current_enqueued_cbs = 0;
+
+ uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
+ & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + desc_idx;
+ desc_first = desc;
+ uint64_t fcw_offset = (desc_idx << 8) + ACC101_DESC_FCW_OFFSET;
+ union acc101_harq_layout_data *harq_layout = q->d->harq_layout;
+ acc101_fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout);
+
+ input = op->ldpc_dec.input.data;
+ h_output_head = h_output = op->ldpc_dec.hard_output.data;
+ in_offset = op->ldpc_dec.input.offset;
+ h_out_offset = op->ldpc_dec.hard_output.offset;
+ h_out_length = 0;
+ mbuf_total_left = op->ldpc_dec.input.length;
+ c = op->ldpc_dec.tb_params.c;
+ r = op->ldpc_dec.tb_params.r;
+
+ while (mbuf_total_left > 0 && r < c) {
+ if (check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_DEC_SCATTER_GATHER))
+ seg_total_left = rte_pktmbuf_data_len(input)
+ - in_offset;
+ else
+ seg_total_left = op->ldpc_dec.input.length;
+ /* Set up DMA descriptor */
+ desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
+ & q->sw_ring_wrap_mask);
+ desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
+ desc->req.data_ptrs[0].blen = ACC101_FCW_LD_BLEN;
+ rte_memcpy(&desc->req.fcw_ld, &desc_first->req.fcw_ld,
+ ACC101_FCW_LD_BLEN);
+ ret = acc101_dma_desc_ld_fill(op, &desc->req, &input,
+ h_output, &in_offset, &h_out_offset,
+ &h_out_length,
+ &mbuf_total_left, &seg_total_left,
+ &desc->req.fcw_ld);
+
+ if (unlikely(ret < 0))
+ return ret;
+
+ /* Hard output */
+ mbuf_append(h_output_head, h_output, h_out_length);
+
+ /* Set total number of CBs in TB */
+ desc->req.cbs_in_tb = cbs_in_tb;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ rte_memdump(stderr, "FCW", &desc->req.fcw_td,
+ sizeof(desc->req.fcw_td) - 8);
+ rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
+#endif
+ if (check_bit(op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_DEC_SCATTER_GATHER)
+ && (seg_total_left == 0)) {
+ /* Go to the next mbuf */
+ input = input->next;
+ in_offset = 0;
+ h_output = h_output->next;
+ h_out_offset = 0;
+ }
+ total_enqueued_cbs++;
+ current_enqueued_cbs++;
+ r++;
+ }
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (check_mbuf_total_left(mbuf_total_left) != 0)
+ return -EINVAL;
+#endif
+ /* Set SDone on last CB descriptor for TB mode */
+ desc->req.sdone_enable = 1;
+ desc->req.irq_enable = q->irq_enable;
+
+ return current_enqueued_cbs;
+}
+
+/* Calculates number of CBs in processed encoder TB based on 'r' and input
+ * length.
+ */
+static inline uint8_t
+get_num_cbs_in_tb_ldpc_enc(struct rte_bbdev_op_ldpc_enc *ldpc_enc)
+{
+ uint8_t c, r, crc24_bits = 0;
+ uint16_t k = (ldpc_enc->basegraph == 1 ? 22 : 10) * ldpc_enc->z_c
+ - ldpc_enc->n_filler;
+ uint8_t cbs_in_tb = 0;
+ int32_t length;
+
+ length = ldpc_enc->input.length;
+ r = ldpc_enc->tb_params.r;
+ c = ldpc_enc->tb_params.c;
+ crc24_bits = 0;
+ if (check_bit(ldpc_enc->op_flags, RTE_BBDEV_LDPC_CRC_24B_ATTACH))
+ crc24_bits = 24;
+ while (length > 0 && r < c) {
+ length -= (k - crc24_bits) >> 3;
+ r++;
+ cbs_in_tb++;
+ }
+ return cbs_in_tb;
+}
+
+/* Calculates number of CBs in processed decoder TB based on 'r' and input
+ * length.
+ */
+static inline uint16_t
+get_num_cbs_in_tb_ldpc_dec(struct rte_bbdev_op_ldpc_dec *ldpc_dec)
+{
+ uint16_t r, cbs_in_tb = 0;
+ int32_t length = ldpc_dec->input.length;
+ r = ldpc_dec->tb_params.r;
+ while (length > 0 && r < ldpc_dec->tb_params.c) {
+ length -= (r < ldpc_dec->tb_params.cab) ?
+ ldpc_dec->tb_params.ea :
+ ldpc_dec->tb_params.eb;
+ r++;
+ cbs_in_tb++;
+ }
+ return cbs_in_tb;
+}
+
+/* Number of available descriptor in ring to enqueue */
+static uint32_t
+acc101_ring_avail_enq(struct acc101_queue *q)
+{
+ return (q->sw_ring_depth - 1 + q->sw_ring_tail - q->sw_ring_head) % q->sw_ring_depth;
+}
+
+/* Number of available descriptor in ring to dequeue */
+static uint32_t
+acc101_ring_avail_deq(struct acc101_queue *q)
+{
+ return (q->sw_ring_depth + q->sw_ring_head - q->sw_ring_tail) % q->sw_ring_depth;
+}
+
+/* Check we can mux encode operations with common FCW */
+static inline int16_t
+check_mux(struct rte_bbdev_enc_op **ops, uint16_t num) {
+ uint16_t i;
+ if (num <= 1)
+ return 1;
+ for (i = 1; i < num; ++i) {
+ /* Only mux compatible code blocks */
+ if (memcmp((uint8_t *)(&ops[i]->ldpc_enc) + ACC101_ENC_OFFSET,
+ (uint8_t *)(&ops[0]->ldpc_enc) +
+ ACC101_ENC_OFFSET,
+ ACC101_CMP_ENC_SIZE) != 0)
+ return i;
+ }
+ /* Avoid multiplexing small inbound size frames */
+ int Kp = (ops[0]->ldpc_enc.basegraph == 1 ? 22 : 10) *
+ ops[0]->ldpc_enc.z_c - ops[0]->ldpc_enc.n_filler;
+ if (Kp <= ACC101_LIMIT_DL_MUX_BITS)
+ return 1;
+ return num;
+}
+
+/** Enqueue encode operations for ACC101 device in CB mode. */
+static inline uint16_t
+acc101_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ struct acc101_queue *q = q_data->queue_private;
+ int32_t avail = acc101_ring_avail_enq(q);
+ uint16_t i = 0;
+ union acc101_dma_desc *desc;
+ int ret, desc_idx = 0;
+ int16_t enq, left = num;
+
+ while (left > 0) {
+ if (unlikely(avail < 1))
+ break;
+ avail--;
+ enq = RTE_MIN(left, ACC101_MUX_5GDL_DESC);
+ enq = check_mux(&ops[i], enq);
+ if (enq > 1) {
+ ret = enqueue_ldpc_enc_n_op_cb(q, &ops[i],
+ desc_idx, enq);
+ if (ret < 0)
+ break;
+ i += enq;
+ } else {
+ ret = enqueue_ldpc_enc_one_op_cb(q, ops[i], desc_idx);
+ if (ret < 0)
+ break;
+ i++;
+ }
+ desc_idx++;
+ left = num - i;
+ }
+
+ if (unlikely(i == 0))
+ return 0; /* Nothing to enqueue */
+
+ /* Set SDone in last CB in enqueued ops for CB mode*/
+ desc = q->ring_addr + ((q->sw_ring_head + desc_idx - 1)
+ & q->sw_ring_wrap_mask);
+ desc->req.sdone_enable = 1;
+ desc->req.irq_enable = q->irq_enable;
+
+ acc101_dma_enqueue(q, desc_idx, &q_data->queue_stats);
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+
+ return i;
+}
+
+/* Enqueue LDPC encode operations for ACC101 device in TB mode. */
+static uint16_t
+acc101_enqueue_ldpc_enc_tb(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ struct acc101_queue *q = q_data->queue_private;
+ int32_t avail = acc101_ring_avail_enq(q);
+ uint16_t i, enqueued_descs = 0;
+ uint8_t cbs_in_tb;
+ int descs_used;
+
+ for (i = 0; i < num; ++i) {
+ cbs_in_tb = get_num_cbs_in_tb_ldpc_enc(&ops[i]->ldpc_enc);
+ /* Check if there are available space for further processing */
+ if (unlikely(avail - cbs_in_tb < 0))
+ break;
+
+
+ descs_used = enqueue_ldpc_enc_one_op_tb(q, ops[i],
+ enqueued_descs, cbs_in_tb);
+ if (descs_used < 0)
+ break;
+ enqueued_descs += descs_used;
+ avail -= descs_used;
+ }
+ if (unlikely(enqueued_descs == 0))
+ return 0; /* Nothing to enqueue */
+
+ acc101_dma_enqueue(q, enqueued_descs, &q_data->queue_stats);
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+
+ return i;
+}
+
+/* Check room in AQ for the enqueues batches into Qmgr */
+static int32_t
+acc101_aq_avail(struct rte_bbdev_queue_data *q_data, uint16_t num_ops)
+{
+ struct acc101_queue *q = q_data->queue_private;
+ int32_t aq_avail = q->aq_depth -
+ ((q->aq_enqueued - q->aq_dequeued +
+ ACC101_MAX_QUEUE_DEPTH) % ACC101_MAX_QUEUE_DEPTH)
+ - (num_ops >> 7);
+ return aq_avail;
+}
+
+/* Enqueue encode operations for ACC101 device. */
+static uint16_t
+acc101_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ uint16_t ret;
+ int32_t aq_avail = acc101_aq_avail(q_data, num);
+ if (unlikely((aq_avail <= 0) || (num == 0)))
+ return 0;
+ if (ops[0]->ldpc_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
+ ret = acc101_enqueue_ldpc_enc_tb(q_data, ops, num);
+ else
+ ret = acc101_enqueue_ldpc_enc_cb(q_data, ops, num);
+ return ret;
+}
+
+/* Enqueue decode operations for ACC101 device in TB mode */
+static uint16_t
+acc101_enqueue_ldpc_dec_tb(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ struct acc101_queue *q = q_data->queue_private;
+ int32_t avail = acc101_ring_avail_enq(q);
+ uint16_t i, enqueued_cbs = 0;
+ uint8_t cbs_in_tb;
+ int ret;
+
+ for (i = 0; i < num; ++i) {
+ cbs_in_tb = get_num_cbs_in_tb_ldpc_dec(&ops[i]->ldpc_dec);
+ /* Check if there are available space for further processing */
+ if (unlikely(avail - cbs_in_tb < 0))
+ break;
+ avail -= cbs_in_tb;
+
+ ret = enqueue_ldpc_dec_one_op_tb(q, ops[i],
+ enqueued_cbs, cbs_in_tb);
+ if (ret < 0)
+ break;
+ enqueued_cbs += ret;
+ }
+ if (unlikely(enqueued_cbs == 0))
+ return 0; /* Nothing to enqueue */
+
+ acc101_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+ return i;
+}
+
+/* Enqueue decode operations for ACC101 device in CB mode */
+static uint16_t
+acc101_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ struct acc101_queue *q = q_data->queue_private;
+ int32_t avail = acc101_ring_avail_enq(q);
+ uint16_t i;
+ union acc101_dma_desc *desc;
+ int ret;
+ bool same_op = false;
+ for (i = 0; i < num; ++i) {
+ /* Check if there are available space for further processing */
+ if (unlikely(avail < 1))
+ break;
+ avail -= 1;
+ rte_bbdev_log(INFO, "Op %d %d %d %d %d %d %d %d %d %d %d %d\n",
+ i, ops[i]->ldpc_dec.op_flags, ops[i]->ldpc_dec.rv_index,
+ ops[i]->ldpc_dec.iter_max, ops[i]->ldpc_dec.iter_count,
+ ops[i]->ldpc_dec.basegraph, ops[i]->ldpc_dec.z_c,
+ ops[i]->ldpc_dec.n_cb, ops[i]->ldpc_dec.q_m,
+ ops[i]->ldpc_dec.n_filler, ops[i]->ldpc_dec.cb_params.e,
+ same_op);
+ ret = enqueue_ldpc_dec_one_op_cb(q, ops[i], i, same_op, q_data);
+ if (ret < 0)
+ break;
+ }
+
+ if (unlikely(i == 0))
+ return 0; /* Nothing to enqueue */
+
+ /* Set SDone in last CB in enqueued ops for CB mode*/
+ desc = q->ring_addr + ((q->sw_ring_head + i - 1)
+ & q->sw_ring_wrap_mask);
+
+ desc->req.sdone_enable = 1;
+ desc->req.irq_enable = q->irq_enable;
+
+ acc101_dma_enqueue(q, i, &q_data->queue_stats);
+
+ /* Update stats */
+ q_data->queue_stats.enqueued_count += i;
+ q_data->queue_stats.enqueue_err_count += num - i;
+ return i;
+}
+
+/* Enqueue decode operations for ACC101 device. */
+static uint16_t
+acc101_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ uint16_t ret;
+ int32_t aq_avail = acc101_aq_avail(q_data, num);
+ if (unlikely((aq_avail <= 0) || (num == 0)))
+ return 0;
+ if (ops[0]->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
+ ret = acc101_enqueue_ldpc_dec_tb(q_data, ops, num);
+ else
+ ret = acc101_enqueue_ldpc_dec_cb(q_data, ops, num);
+ return ret;
+}
+
+
+/* Dequeue one encode operations from ACC101 device in CB mode
+ */
+static inline int
+dequeue_enc_one_op_cb(struct acc101_queue *q, struct rte_bbdev_enc_op **ref_op,
+ uint16_t *dequeued_ops, uint32_t *aq_dequeued,
+ uint16_t *dequeued_descs)
+{
+ union acc101_dma_desc *desc, atom_desc;
+ union acc101_dma_rsp_desc rsp;
+ struct rte_bbdev_enc_op *op;
+ int i;
+ int desc_idx = ((q->sw_ring_tail + *dequeued_descs)
+ & q->sw_ring_wrap_mask);
+ desc = q->ring_addr + desc_idx;
+ atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
+ __ATOMIC_RELAXED);
+
+ /* Check fdone bit */
+ if (!(atom_desc.rsp.val & ACC101_FDONE))
+ return -1;
+
+ rsp.val = atom_desc.rsp.val;
+ rte_bbdev_log_debug("Resp. desc %p: %x num %d\n",
+ desc, rsp.val, desc->req.numCBs);
+
+ /* Dequeue */
+ op = desc->req.op_addr;
+
+ /* Clearing status, it will be set based on response */
+ op->status = 0;
+ op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
+ op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
+
+ if (desc->req.last_desc_in_batch) {
+ (*aq_dequeued)++;
+ desc->req.last_desc_in_batch = 0;
+ }
+ desc->rsp.val = ACC101_DMA_DESC_TYPE;
+ desc->rsp.add_info_0 = 0; /*Reserved bits */
+ desc->rsp.add_info_1 = 0; /*Reserved bits */
+
+ ref_op[0] = op;
+ struct acc101_ptrs *context_ptrs = q->companion_ring_addr + desc_idx;
+ for (i = 1 ; i < desc->req.numCBs; i++)
+ ref_op[i] = context_ptrs->ptr[i].op_addr;
+
+ /* One op was successfully dequeued */
+ (*dequeued_descs)++;
+ *dequeued_ops += desc->req.numCBs;
+ return desc->req.numCBs;
+}
+
+/* Dequeue one LDPC encode operations from ACC101 device in TB mode
+ * That operation may cover multiple descriptors
+ */
+static inline int
+dequeue_enc_one_op_tb(struct acc101_queue *q, struct rte_bbdev_enc_op **ref_op,
+ uint16_t *dequeued_ops, uint32_t *aq_dequeued,
+ uint16_t *dequeued_descs)
+{
+ union acc101_dma_desc *desc, *last_desc, atom_desc;
+ union acc101_dma_rsp_desc rsp;
+ struct rte_bbdev_enc_op *op;
+ uint8_t i = 0;
+ uint16_t current_dequeued_descs = 0, descs_in_tb;
+
+ desc = q->ring_addr + ((q->sw_ring_tail + *dequeued_descs)
+ & q->sw_ring_wrap_mask);
+ atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
+ __ATOMIC_RELAXED);
+
+ /* Check fdone bit */
+ if (!(atom_desc.rsp.val & ACC101_FDONE))
+ return -1;
+
+ /* Get number of CBs in dequeued TB */
+ descs_in_tb = desc->req.cbs_in_tb;
+ /* Get last CB */
+ last_desc = q->ring_addr + ((q->sw_ring_tail
+ + *dequeued_descs + descs_in_tb - 1)
+ & q->sw_ring_wrap_mask);
+ /* Check if last CB in TB is ready to dequeue (and thus
+ * the whole TB) - checking sdone bit. If not return.
+ */
+ atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
+ __ATOMIC_RELAXED);
+ if (!(atom_desc.rsp.val & ACC101_SDONE))
+ return -1;
+
+ /* Dequeue */
+ op = desc->req.op_addr;
+
+ /* Clearing status, it will be set based on response */
+ op->status = 0;
+
+ while (i < descs_in_tb) {
+ desc = q->ring_addr + ((q->sw_ring_tail
+ + *dequeued_descs)
+ & q->sw_ring_wrap_mask);
+ atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
+ __ATOMIC_RELAXED);
+ rsp.val = atom_desc.rsp.val;
+ rte_bbdev_log_debug("Resp. desc %p: %x descs %d cbs %d\n",
+ desc,
+ rsp.val, descs_in_tb,
+ desc->req.numCBs);
+
+ op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
+ op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
+
+ if (desc->req.last_desc_in_batch) {
+ (*aq_dequeued)++;
+ desc->req.last_desc_in_batch = 0;
+ }
+ desc->rsp.val = ACC101_DMA_DESC_TYPE;
+ desc->rsp.add_info_0 = 0;
+ desc->rsp.add_info_1 = 0;
+ (*dequeued_descs)++;
+ current_dequeued_descs++;
+ i++;
+ }
+
+ *ref_op = op;
+ (*dequeued_ops)++;
+ return current_dequeued_descs;
+}
+
+
+/* Dequeue one decode operations from ACC101 device in CB mode */
+static inline int
+dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
+ struct acc101_queue *q, struct rte_bbdev_dec_op **ref_op,
+ uint16_t dequeued_cbs, uint32_t *aq_dequeued)
+{
+ union acc101_dma_desc *desc, atom_desc;
+ union acc101_dma_rsp_desc rsp;
+ struct rte_bbdev_dec_op *op;
+
+ desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
+ & q->sw_ring_wrap_mask);
+ atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
+ __ATOMIC_RELAXED);
+
+ /* Check fdone bit */
+ if (!(atom_desc.rsp.val & ACC101_FDONE))
+ return -1;
+
+ rsp.val = atom_desc.rsp.val;
+ rte_bbdev_log_debug("Resp. desc %p: %x\n", desc, rsp.val);
+
+ /* Dequeue */
+ op = desc->req.op_addr;
+
+ /* Clearing status, it will be set based on response */
+ op->status = 0;
+ op->status |= rsp.input_err << RTE_BBDEV_DATA_ERROR;
+ op->status |= rsp.dma_err << RTE_BBDEV_DRV_ERROR;
+ op->status |= rsp.fcw_err << RTE_BBDEV_DRV_ERROR;
+ if (op->status != 0)
+ q_data->queue_stats.dequeue_err_count++;
+
+ op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
+ if (op->ldpc_dec.hard_output.length > 0 && !rsp.synd_ok)
+ op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
+ op->ldpc_dec.iter_count = (uint8_t) rsp.iter_cnt;
+
+ /* Check if this is the last desc in batch (Atomic Queue) */
+ if (desc->req.last_desc_in_batch) {
+ (*aq_dequeued)++;
+ desc->req.last_desc_in_batch = 0;
+ }
+
+ desc->rsp.val = ACC101_DMA_DESC_TYPE;
+ desc->rsp.add_info_0 = 0;
+ desc->rsp.add_info_1 = 0;
+
+ *ref_op = op;
+
+ /* One CB (op) was successfully dequeued */
+ return 1;
+}
+
+/* Dequeue one decode operations from ACC101 device in TB mode. */
+static inline int
+dequeue_dec_one_op_tb(struct acc101_queue *q, struct rte_bbdev_dec_op **ref_op,
+ uint16_t dequeued_cbs, uint32_t *aq_dequeued)
+{
+ union acc101_dma_desc *desc, *last_desc, atom_desc;
+ union acc101_dma_rsp_desc rsp;
+ struct rte_bbdev_dec_op *op;
+ uint8_t cbs_in_tb = 1, cb_idx = 0;
+
+ desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
+ & q->sw_ring_wrap_mask);
+ atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
+ __ATOMIC_RELAXED);
+
+ /* Check fdone bit */
+ if (!(atom_desc.rsp.val & ACC101_FDONE))
+ return -1;
+
+ /* Dequeue */
+ op = desc->req.op_addr;
+
+ /* Get number of CBs in dequeued TB */
+ cbs_in_tb = desc->req.cbs_in_tb;
+ /* Get last CB */
+ last_desc = q->ring_addr + ((q->sw_ring_tail
+ + dequeued_cbs + cbs_in_tb - 1)
+ & q->sw_ring_wrap_mask);
+ /* Check if last CB in TB is ready to dequeue (and thus
+ * the whole TB) - checking sdone bit. If not return.
+ */
+ atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
+ __ATOMIC_RELAXED);
+ if (!(atom_desc.rsp.val & ACC101_SDONE))
+ return -1;
+
+ /* Clearing status, it will be set based on response */
+ op->status = 0;
+
+ /* Read remaining CBs if exists */
+ while (cb_idx < cbs_in_tb) {
+ desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
+ & q->sw_ring_wrap_mask);
+ atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
+ __ATOMIC_RELAXED);
+ rsp.val = atom_desc.rsp.val;
+ rte_bbdev_log_debug("Resp. desc %p: %x r %d c %d\n",
+ desc, rsp.val,
+ cb_idx, cbs_in_tb);
+
+ op->status |= ((rsp.input_err)
+ ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
+ op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
+ op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
+
+ /* CRC invalid if error exists */
+ if (!op->status)
+ op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
+ op->turbo_dec.iter_count = RTE_MAX((uint8_t) rsp.iter_cnt,
+ op->turbo_dec.iter_count);
+
+ /* Check if this is the last desc in batch (Atomic Queue) */
+ if (desc->req.last_desc_in_batch) {
+ (*aq_dequeued)++;
+ desc->req.last_desc_in_batch = 0;
+ }
+ desc->rsp.val = ACC101_DMA_DESC_TYPE;
+ desc->rsp.add_info_0 = 0;
+ desc->rsp.add_info_1 = 0;
+ dequeued_cbs++;
+ cb_idx++;
+ }
+
+ *ref_op = op;
+
+ return cb_idx;
+}
+
+/* Dequeue LDPC encode operations from ACC101 device. */
+static uint16_t
+acc101_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_enc_op **ops, uint16_t num)
+{
+ struct acc101_queue *q = q_data->queue_private;
+ uint32_t avail = acc101_ring_avail_deq(q);
+ uint32_t aq_dequeued = 0;
+ uint16_t i, dequeued_ops = 0, dequeued_descs = 0;
+ int ret;
+ struct rte_bbdev_enc_op *op;
+ if (avail == 0)
+ return 0;
+ op = (q->ring_addr + (q->sw_ring_tail &
+ q->sw_ring_wrap_mask))->req.op_addr;
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (unlikely(ops == NULL || q == NULL || op == NULL))
+ return 0;
+#endif
+ int cbm = op->ldpc_enc.code_block_mode;
+
+ for (i = 0; i < num; i++) {
+ if (cbm == RTE_BBDEV_TRANSPORT_BLOCK)
+ ret = dequeue_enc_one_op_tb(q, &ops[dequeued_ops],
+ &dequeued_ops, &aq_dequeued,
+ &dequeued_descs);
+ else
+ ret = dequeue_enc_one_op_cb(q, &ops[dequeued_ops],
+ &dequeued_ops, &aq_dequeued,
+ &dequeued_descs);
+ if (ret < 0)
+ break;
+ if (dequeued_ops >= num)
+ break;
+ }
+
+ q->aq_dequeued += aq_dequeued;
+ q->sw_ring_tail += dequeued_descs;
+
+ /* Update enqueue stats */
+ q_data->queue_stats.dequeued_count += dequeued_ops;
+ return dequeued_ops;
+}
+
+/* Dequeue decode operations from ACC101 device. */
+static uint16_t
+acc101_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
+ struct rte_bbdev_dec_op **ops, uint16_t num)
+{
+ struct acc101_queue *q = q_data->queue_private;
+ uint16_t dequeue_num;
+ uint32_t avail = acc101_ring_avail_deq(q);
+ uint32_t aq_dequeued = 0;
+ uint16_t i;
+ uint16_t dequeued_cbs = 0;
+ struct rte_bbdev_dec_op *op;
+ int ret;
+
+#ifdef RTE_LIBRTE_BBDEV_DEBUG
+ if (unlikely(ops == 0 && q == NULL))
+ return 0;
+#endif
+
+ dequeue_num = RTE_MIN(avail, num);
+
+ for (i = 0; i < dequeue_num; ++i) {
+ op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
+ & q->sw_ring_wrap_mask))->req.op_addr;
+ if (op->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
+ ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
+ &aq_dequeued);
+ else
+ ret = dequeue_ldpc_dec_one_op_cb(
+ q_data, q, &ops[i], dequeued_cbs,
+ &aq_dequeued);
+
+ if (ret < 0)
+ break;
+ dequeued_cbs += ret;
+ }
+
+ q->aq_dequeued += aq_dequeued;
+ q->sw_ring_tail += dequeued_cbs;
+
+ /* Update enqueue stats */
+ q_data->queue_stats.dequeued_count += i;
+ return i;
+}
+
/* Initialization Function */
static void
acc101_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
@@ -831,6 +2564,10 @@
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
dev->dev_ops = &acc101_bbdev_ops;
+ dev->enqueue_ldpc_enc_ops = acc101_enqueue_ldpc_enc;
+ dev->enqueue_ldpc_dec_ops = acc101_enqueue_ldpc_dec;
+ dev->dequeue_ldpc_enc_ops = acc101_dequeue_ldpc_enc;
+ dev->dequeue_ldpc_dec_ops = acc101_dequeue_ldpc_dec;
((struct acc101_device *) dev->data->dev_private)->pf_device =
!strcmp(drv->driver.name,
diff --git a/drivers/baseband/acc101/rte_acc101_pmd.h b/drivers/baseband/acc101/rte_acc101_pmd.h
index 65cab8a..1cbbb1f 100644
--- a/drivers/baseband/acc101/rte_acc101_pmd.h
+++ b/drivers/baseband/acc101/rte_acc101_pmd.h
@@ -62,6 +62,10 @@
* 128M x 32kB = 4GB addressable memory
*/
#define ACC101_HARQ_LAYOUT (128 * 1024 * 1024)
+/* Assume offset for HARQ in memory */
+#define ACC101_HARQ_OFFSET (32 * 1024)
+#define ACC101_HARQ_OFFSET_SHIFT 15
+#define ACC101_HARQ_OFFSET_MASK 0x7ffffff
/* Mask used to calculate an index in an Info Ring array (not a byte offset) */
#define ACC101_INFO_RING_MASK (ACC101_INFO_RING_NUM_ENTRIES-1)
/* Number of Virtual Functions ACC101 supports */
@@ -76,6 +80,8 @@
#define ACC101_GRP_ID_SHIFT 10 /* Queue Index Hierarchy */
#define ACC101_VF_ID_SHIFT 4 /* Queue Index Hierarchy */
#define ACC101_QUEUE_ENABLE 0x80000000 /* Bit to mark Queue as Enabled */
+#define ACC101_FDONE 0x80000000
+#define ACC101_SDONE 0x40000000
#define ACC101_NUM_ACCS 5
#define ACC101_ACCMAP_0 0
@@ -105,6 +111,26 @@
#define ACC101_COMPANION_PTRS 8
#define ACC101_FCW_VER 2
+#define ACC101_MUX_5GDL_DESC 6
+#define ACC101_CMP_ENC_SIZE 20
+#define ACC101_CMP_DEC_SIZE 24
+#define ACC101_ENC_OFFSET (32)
+#define ACC101_DEC_OFFSET (80)
+#define ACC101_EXT_MEM /* Default option with memory external to CPU */
+#define ACC101_HARQ_OFFSET_THRESHOLD 1024
+#define ACC101_LIMIT_DL_MUX_BITS 534
+
+/* Constants from K0 computation from 3GPP 38.212 Table 5.4.2.1-2 */
+#define ACC101_N_ZC_1 66 /* N = 66 Zc for BG 1 */
+#define ACC101_N_ZC_2 50 /* N = 50 Zc for BG 2 */
+#define ACC101_K_ZC_1 22 /* K = 22 Zc for BG 1 */
+#define ACC101_K_ZC_2 10 /* K = 10 Zc for BG 2 */
+#define ACC101_K0_1_1 17 /* K0 fraction numerator for rv 1 and BG 1 */
+#define ACC101_K0_1_2 13 /* K0 fraction numerator for rv 1 and BG 2 */
+#define ACC101_K0_2_1 33 /* K0 fraction numerator for rv 2 and BG 1 */
+#define ACC101_K0_2_2 25 /* K0 fraction numerator for rv 2 and BG 2 */
+#define ACC101_K0_3_1 56 /* K0 fraction numerator for rv 3 and BG 1 */
+#define ACC101_K0_3_2 43 /* K0 fraction numerator for rv 3 and BG 2 */
#define ACC101_LONG_WAIT 1000
--
1.8.3.1
next prev parent reply other threads:[~2022-04-04 21:17 UTC|newest]
Thread overview: 12+ messages / expand[flat|nested] mbox.gz Atom feed top
2022-04-04 21:13 [PATCH v1 0/9] drivers/baseband: new PMD for ACC101 device Nicolas Chautru
2022-04-04 21:13 ` [PATCH v1 1/9] baseband/acc101: introduce PMD for ACC101 Nicolas Chautru
2022-04-04 21:13 ` [PATCH v1 2/9] baseband/acc101: add HW register definition Nicolas Chautru
2022-04-04 21:13 ` [PATCH v1 3/9] baseband/acc101: add info get function Nicolas Chautru
2022-04-04 21:13 ` [PATCH v1 4/9] baseband/acc101: add queue configuration Nicolas Chautru
2022-04-04 21:13 ` Nicolas Chautru [this message]
2022-04-04 21:13 ` [PATCH v1 6/9] baseband/acc101: support HARQ loopback Nicolas Chautru
2022-04-04 21:13 ` [PATCH v1 7/9] baseband/acc101: support 4G processing Nicolas Chautru
2022-04-04 21:13 ` [PATCH v1 8/9] baseband/acc101: support MSI interrupt Nicolas Chautru
2022-04-04 21:13 ` [PATCH v1 9/9] baseband/acc101: add device configure function Nicolas Chautru
2022-04-05 6:48 ` [PATCH v1 0/9] drivers/baseband: new PMD for ACC101 device Thomas Monjalon
2022-04-05 6:57 ` David Marchand
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=1649106828-116338-6-git-send-email-nicolas.chautru@intel.com \
--to=nicolas.chautru@intel.com \
--cc=bruce.richardson@intel.com \
--cc=david.marchand@redhat.com \
--cc=dev@dpdk.org \
--cc=gakhil@marvell.com \
--cc=hemant.agrawal@nxp.com \
--cc=mingshan.zhang@intel.com \
--cc=ray.kinsella@intel.com \
--cc=thomas@monjalon.net \
--cc=trix@redhat.com \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).