From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from mails.dpdk.org (mails.dpdk.org [217.70.189.124]) by inbox.dpdk.org (Postfix) with ESMTP id D7BEEA0032; Tue, 16 Nov 2021 13:37:06 +0100 (CET) Received: from [217.70.189.124] (localhost [127.0.0.1]) by mails.dpdk.org (Postfix) with ESMTP id 58F9441148; Tue, 16 Nov 2021 13:37:01 +0100 (CET) Received: from NAM04-BN8-obe.outbound.protection.outlook.com (mail-bn8nam08on2084.outbound.protection.outlook.com [40.107.100.84]) by mails.dpdk.org (Postfix) with ESMTP id A17C440040 for ; Tue, 16 Nov 2021 13:36:59 +0100 (CET) ARC-Seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=keKzbD3X4zHJEaYTvX3pURKCO4KUcfLO8XVvdTZPWdbym1kOsPXfwzY2yCbxTlpoCo9gfxDSmKEscfqmicG2HaoVwqomeCIyV9JeY+S/07yTJUoq8oSZIqcp6hlRtrb+DSKKfzYTvv0y2Rfo+lJpmJy7ghZEJ8ib4JAFxpP7I+zUMllRoOljo7Si48sUzqxBYFMIERxg0K6gGAtmsz2RGBXpzu4hzfO5zcY6FePxs1cPLaciEZIa2vq3iKayEzO2SuhAgx3O/wcG+ySs6bUKgdko3Z25vM9jMVg6T8HX5c5gvpfJFRy5jkdqGch6FvJTULL5ZAhl2jQ++QzGZ6NdVw== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=N5oOetZs1iSFXcdxMMxVDaKEtcHaTCJEo1qzrQmuEaQ=; b=ax1ZHJOFiJq4vNPyd38W24j8nVoI9HjYTbvF6dMv0mawPrkskO6ssismdzWXqqMdp3KdFvQnGjgx13RfwMgnWkT/Io1Bj1UuP7a2PODeXDJrotq3FpMv4b5sQqaa6gUAsIx4oqCZbdnTTWJ4CQDPafheeZ4eufTSjWNcHq8H6gJtjSKi/U6lMji43uSeW7rhrMbuOQXqQqoDB0bORyGN7c8DtflYXw0Y3lD+gzrhdhfXax97G3JoEinwtL/q/bQ8YR5Nc/LP/RCv3ZxQu9E3jhY6GWrIWi/XDOQk+4mOFy3IzcGiNJc/C5F2EJAz84jbMjIN2c9XI+I+4Qh3qujSJw== ARC-Authentication-Results: i=1; mx.microsoft.com 1; spf=pass (sender ip is 216.228.112.34) smtp.rcpttodomain=dpdk.org smtp.mailfrom=nvidia.com; dmarc=pass (p=quarantine sp=quarantine pct=100) action=none header.from=nvidia.com; dkim=none (message not signed); arc=none DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=Nvidia.com; s=selector2; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-SenderADCheck; bh=N5oOetZs1iSFXcdxMMxVDaKEtcHaTCJEo1qzrQmuEaQ=; b=XQq3AJ1xDOTMrz6i6W7wZDazns55kJHkxyXGUbEHjCTXekIAVZYv6STWt8xfjfYiUVu+wGLfOKkXVe7KiVS8np5J7GIdc1xSli/MwGHBUgXX52J28zfT/ObB0i6/hJAfcEkfIJ+V2T8f/VmUVL/BN8BojkInCTCXopl3wIdSW0zKoHqWpxrhTjllaOeXDl2fZvuc5cPtUj6M2hZQF+R/m4gLFs16CDDKXnJwqtG961KcS4zbCmIyyBBY4GjHEV76NGUFCyKY+EN6QdROPoQXfKc7jF/t9bT6ti0AGhMo6oajKqglKUDyWg/o5ki2npUWuTfH7lIqPdKevTF+dFOkMA== Received: from DM3PR12CA0120.namprd12.prod.outlook.com (2603:10b6:0:51::16) by CY4PR12MB1910.namprd12.prod.outlook.com (2603:10b6:903:128::11) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.4690.27; Tue, 16 Nov 2021 12:36:57 +0000 Received: from DM6NAM11FT064.eop-nam11.prod.protection.outlook.com (2603:10b6:0:51:cafe::34) by DM3PR12CA0120.outlook.office365.com (2603:10b6:0:51::16) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id 15.20.4690.26 via Frontend Transport; Tue, 16 Nov 2021 12:36:56 +0000 X-MS-Exchange-Authentication-Results: spf=pass (sender IP is 216.228.112.34) smtp.mailfrom=nvidia.com; dkim=none (message not signed) header.d=none;dmarc=pass action=none header.from=nvidia.com; Received-SPF: Pass (protection.outlook.com: domain of nvidia.com designates 216.228.112.34 as permitted sender) receiver=protection.outlook.com; client-ip=216.228.112.34; helo=mail.nvidia.com; Received: from mail.nvidia.com (216.228.112.34) by DM6NAM11FT064.mail.protection.outlook.com (10.13.172.234) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384) id 15.20.4690.15 via Frontend Transport; Tue, 16 Nov 2021 12:36:56 +0000 Received: from nvidia.com (172.20.187.5) by HQMAIL107.nvidia.com (172.20.187.13) with Microsoft SMTP Server (TLS) id 15.0.1497.18; Tue, 16 Nov 2021 12:36:54 +0000 From: To: CC: Elena Agostini Subject: [PATCH v6 1/1] gpu/cuda: introduce CUDA driver Date: Tue, 16 Nov 2021 20:47:25 +0000 Message-ID: <20211116204725.27897-2-eagostini@nvidia.com> X-Mailer: git-send-email 2.17.1 In-Reply-To: <20211116204725.27897-1-eagostini@nvidia.com> References: <20211005224905.13505-1-eagostini@nvidia.com> <20211116204725.27897-1-eagostini@nvidia.com> MIME-Version: 1.0 Content-Type: text/plain X-Originating-IP: [172.20.187.5] X-ClientProxiedBy: HQMAIL111.nvidia.com (172.20.187.18) To HQMAIL107.nvidia.com (172.20.187.13) X-EOPAttributedMessage: 0 X-MS-PublicTrafficType: Email X-MS-Office365-Filtering-Correlation-Id: 4c52b439-1e6e-43d2-7519-08d9a8fdc6d2 X-MS-TrafficTypeDiagnostic: CY4PR12MB1910: X-Microsoft-Antispam-PRVS: X-MS-Oob-TLC-OOBClassifiers: OLM:1107; X-MS-Exchange-SenderADCheck: 1 X-MS-Exchange-AntiSpam-Relay: 0 X-Microsoft-Antispam: BCL:0; X-Microsoft-Antispam-Message-Info: uSzHsWn2jXGa4+t3fgBenTvlAOpN4tDZi0oy90S/AEbOsyCmJgoMoNdUDOqsjTbMWx1ulWJ5dfpFKgH5MCzBMBi9kFMVocsHzE45GINqtfAfvJiEdmnvpdLXpaRVdESyhPjTF+Z0T1a0sGicXSZ7jKeF/Clt/bXp6zEcooc6E7Y7jIC/2H5to27h4ZQavQF4e2XfcqcD3fJ/IFThvVK3mWMkn2OdAXCKYOwcAGV+f7Nniudgjn2Ep/RGpzRD2cFUKXra0FMj30Txk4nypEU9hHiZ/YT9pt3nLwVro2QFhdofYXBO5zzoGC3XtcNblbSjYuDzv6MsYYn+K3D5VDmcFpB0YKxIHIwaJUtE8EKfUN0Wf4QRnjYyKzKloC/o1Pi3U4zcOJHtOdCWXIyE0DTML+VueQJMhq1xLOGiOLZ0dEGfInp9c7+CT5rM/6YjraWbRzK1fziHR1RUjlkj6wK/ATbCgbdEn5Io3SpEcIUv8xMldTu4z5kxesjvn99VNdcxZCiZMxRM2Ra2VI14b4spzeA7SzXZ4MLnBqk9aNeUV0cp9LCuHnqLOGH2oYGH9IxWsKM8yHmLZ++H0WQ+tHAFcCZZkfDeFaOjwnjMoKWhFK7ZqUiT7ELojrnH+bSaJKigGC0t0qkqlgBuzZf5Z4WLYFHpHR61jyNBMFRWhGqNrwPWD+PkXmlio1WXKEfWU+fEdUUaS9Z2GHrqhCMiXEHSc6fGqJA2bmKerKNcQ/Kn5wxjFzmL+99aPVD8mDzP7+m++Eg5x8jzYa5OKPEeVX24mER1hxduiD3SJMtLDob8x3l7ktfTpHeRcmD/P+htkHpU X-Forefront-Antispam-Report: CIP:216.228.112.34; CTRY:US; LANG:en; SCL:1; SRV:; IPV:NLI; SFV:NSPM; H:mail.nvidia.com; PTR:schybrid03.nvidia.com; CAT:NONE; SFS:(4636009)(36840700001)(46966006)(8936002)(36906005)(4326008)(508600001)(186003)(47076005)(7696005)(336012)(36756003)(107886003)(2616005)(6286002)(8676002)(36860700001)(6916009)(55016002)(83380400001)(2876002)(426003)(7636003)(16526019)(6666004)(70586007)(2906002)(356005)(316002)(30864003)(86362001)(26005)(5660300002)(1076003)(82310400003)(70206006)(579004); DIR:OUT; SFP:1101; X-OriginatorOrg: Nvidia.com X-MS-Exchange-CrossTenant-OriginalArrivalTime: 16 Nov 2021 12:36:56.3300 (UTC) X-MS-Exchange-CrossTenant-Network-Message-Id: 4c52b439-1e6e-43d2-7519-08d9a8fdc6d2 X-MS-Exchange-CrossTenant-Id: 43083d15-7273-40c1-b7db-39efd9ccc17a X-MS-Exchange-CrossTenant-OriginalAttributedTenantConnectingIp: TenantId=43083d15-7273-40c1-b7db-39efd9ccc17a; Ip=[216.228.112.34]; Helo=[mail.nvidia.com] X-MS-Exchange-CrossTenant-AuthSource: DM6NAM11FT064.eop-nam11.prod.protection.outlook.com X-MS-Exchange-CrossTenant-AuthAs: Anonymous X-MS-Exchange-CrossTenant-FromEntityHeader: HybridOnPrem X-MS-Exchange-Transport-CrossTenantHeadersStamped: CY4PR12MB1910 X-BeenThere: dev@dpdk.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: DPDK patches and discussions List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Errors-To: dev-bounces@dpdk.org From: Elena Agostini This is the CUDA implementation of the gpudev library. Functionalities implemented through CUDA Driver API are: - Device probe and remove - Manage device memory allocations - Register/unregister external CPU memory in the device memory area Signed-off-by: Elena Agostini --- doc/guides/gpus/cuda.rst | 151 ++++ doc/guides/gpus/index.rst | 1 + doc/guides/rel_notes/release_21_11.rst | 2 + drivers/gpu/cuda/cuda.c | 1145 ++++++++++++++++++++++++ drivers/gpu/cuda/meson.build | 18 + drivers/gpu/cuda/version.map | 3 + drivers/gpu/meson.build | 2 +- 7 files changed, 1321 insertions(+), 1 deletion(-) create mode 100644 doc/guides/gpus/cuda.rst create mode 100644 drivers/gpu/cuda/cuda.c create mode 100644 drivers/gpu/cuda/meson.build create mode 100644 drivers/gpu/cuda/version.map diff --git a/doc/guides/gpus/cuda.rst b/doc/guides/gpus/cuda.rst new file mode 100644 index 0000000000..9897d52d06 --- /dev/null +++ b/doc/guides/gpus/cuda.rst @@ -0,0 +1,151 @@ +.. SPDX-License-Identifier: BSD-3-Clause + Copyright (c) 2021 NVIDIA Corporation & Affiliates + +CUDA GPU driver +=============== + +The CUDA GPU driver library (**librte_gpu_cuda**) provides support for NVIDIA GPUs. +Information and documentation about these devices can be found on the +`NVIDIA website `_. Help is also provided by the +`NVIDIA CUDA Toolkit developer zone `_. + +Build dependencies +------------------ + +The CUDA GPU driver library has an header-only dependency on ``cuda.h`` and ``cudaTypedefs.h``. +To get these headers there are two options: + +- Install `CUDA Toolkit `_ + (either regular or stubs installation). +- Download these two headers from this `CUDA headers + `_ public repo. + +You need to indicate to meson where CUDA headers files are through the CFLAGS variable. +Two ways: + +- Set ``export CFLAGS=-I/usr/local/cuda/include`` before building +- Add CFLAGS in the meson command line ``CFLAGS=-I/usr/local/cuda/include meson build`` + +If headers are not found, the CUDA GPU driver library is not built. + +CUDA Shared Library +------------------- + +To avoid any system configuration issue, the CUDA API **libcuda.so** shared library +is not linked at building time because of a Meson bug that looks +for `cudart` module even if the `meson.build` file only requires default `cuda` module. + +**libcuda.so** is loaded at runtime in the ``cuda_gpu_probe`` function through ``dlopen`` +when the very first GPU is detected. +If CUDA installation resides in a custom directory, +the environment variable ``CUDA_PATH_L`` should specify where ``dlopen`` +can look for **libcuda.so**. + +All CUDA API symbols are loaded at runtime as well. +For this reason, to build the CUDA driver library, +no need to install the CUDA library. + +Design +------ + +**librte_gpu_cuda** relies on CUDA Driver API (no need for CUDA Runtime API). + +Goal of this driver library is not to provide a wrapper for the whole CUDA Driver API. +Instead, the scope is to implement the generic features of gpudev API. +For a CUDA application, integrating the gpudev library functions +using the CUDA driver library is quite straightforward +and doesn't create any compatibility problem. + +Initialization +~~~~~~~~~~~~~~ + +During initialization, CUDA driver library detects NVIDIA physical GPUs +on the system or specified via EAL device options (e.g. ``-a b6:00.0``). +The driver initializes the CUDA driver environment through ``cuInit(0)`` function. +For this reason, it's required to set any CUDA environment configuration before +calling ``rte_eal_init`` function in the DPDK application. + +If the CUDA driver environment has been already initialized, the ``cuInit(0)`` +in CUDA driver library has no effect. + +CUDA Driver sub-contexts +~~~~~~~~~~~~~~~~~~~~~~~~ + +After initialization, a CUDA application can create multiple sub-contexts +on GPU physical devices. +Through gpudev library, is possible to register these sub-contexts +in the CUDA driver library as child devices having as parent a GPU physical device. + +CUDA driver library also supports `MPS +`__. + +GPU memory management +~~~~~~~~~~~~~~~~~~~~~ + +The CUDA driver library maintains a table of GPU memory addresses allocated +and CPU memory addresses registered associated to the input CUDA context. +Whenever the application tried to deallocate or deregister a memory address, +if the address is not in the table the CUDA driver library will return an error. + +Features +-------- + +- Register new child devices aka new CUDA Driver contexts. +- Allocate memory on the GPU. +- Register CPU memory to make it visible from GPU. + +Minimal requirements +-------------------- + +Minimal requirements to enable the CUDA driver library are: + +- NVIDIA GPU Ampere or Volta +- CUDA 11.4 Driver API or newer + +`GPUDirect RDMA Technology `_ +allows compatible network cards (e.g. Mellanox) to directly send and receive packets +using GPU memory instead of additional memory copies through the CPU system memory. +To enable this technology, system requirements are: + +- `nvidia-peermem `_ + module running on the system; +- Mellanox network card ConnectX-5 or newer (BlueField models included); +- DPDK mlx5 PMD enabled; +- To reach the best performance, an additional PCIe switch between GPU and NIC is recommended. + +Limitations +----------- + +Supported only on Linux. + +Supported GPUs +-------------- + +The following NVIDIA GPU devices are supported by this CUDA driver library: + +- NVIDIA A100 80GB PCIe +- NVIDIA A100 40GB PCIe +- NVIDIA A30 24GB +- NVIDIA A10 24GB +- NVIDIA V100 32GB PCIe +- NVIDIA V100 16GB PCIe + +External references +------------------- + +A good example of how to use the GPU CUDA driver library through the gpudev library +is the l2fwd-nv application that can be found `here `_. + +The application is based on vanilla DPDK example l2fwd +and is enhanced with GPU memory managed through gpudev library +and CUDA to launch the swap of packets MAC addresses workload on the GPU. + +l2fwd-nv is not intended to be used for performance +(testpmd is the good candidate for this). +The goal is to show different use-cases about how a CUDA application can use DPDK to: + +- Allocate memory on GPU device using gpudev library. +- Use that memory to create an external GPU memory mempool. +- Receive packets directly in GPU memory. +- Coordinate the workload on the GPU with the network and CPU activity to receive packets. +- Send modified packets directly from the GPU memory. diff --git a/doc/guides/gpus/index.rst b/doc/guides/gpus/index.rst index 1878423239..4b7a420556 100644 --- a/doc/guides/gpus/index.rst +++ b/doc/guides/gpus/index.rst @@ -9,3 +9,4 @@ General-Purpose Graphics Processing Unit Drivers :numbered: overview + cuda diff --git a/doc/guides/rel_notes/release_21_11.rst b/doc/guides/rel_notes/release_21_11.rst index cd4dcd0077..d76bba2fe3 100644 --- a/doc/guides/rel_notes/release_21_11.rst +++ b/doc/guides/rel_notes/release_21_11.rst @@ -111,6 +111,8 @@ New Features * Memory management * Communication flag & list +* **Added NVIDIA GPU driver implemented with CUDA library.** + * **Added new RSS offload types for IPv4/L4 checksum in RSS flow.** Added macros ETH_RSS_IPV4_CHKSUM and ETH_RSS_L4_CHKSUM, now IPv4 and diff --git a/drivers/gpu/cuda/cuda.c b/drivers/gpu/cuda/cuda.c new file mode 100644 index 0000000000..25556e0591 --- /dev/null +++ b/drivers/gpu/cuda/cuda.c @@ -0,0 +1,1145 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright (c) 2021 NVIDIA Corporation & Affiliates + */ + +#include + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +#define CUDA_DRIVER_MIN_VERSION 11040 +#define CUDA_API_MIN_VERSION 3020 + +/* CUDA Driver functions loaded with dlsym() */ +CUresult CUDAAPI (*sym_cuInit)(unsigned int flags) = NULL; +CUresult CUDAAPI (*sym_cuDriverGetVersion)(int *driverVersion) = NULL; +CUresult CUDAAPI (*sym_cuGetProcAddress)(const char *symbol, + void **pfn, int cudaVersion, uint64_t flags) = NULL; + +/* CUDA Driver functions loaded with cuGetProcAddress for versioning */ +PFN_cuGetErrorString pfn_cuGetErrorString; +PFN_cuGetErrorName pfn_cuGetErrorName; +PFN_cuPointerSetAttribute pfn_cuPointerSetAttribute; +PFN_cuDeviceGetAttribute pfn_cuDeviceGetAttribute; +PFN_cuDeviceGetByPCIBusId pfn_cuDeviceGetByPCIBusId; +PFN_cuDevicePrimaryCtxRetain pfn_cuDevicePrimaryCtxRetain; +PFN_cuDevicePrimaryCtxRelease pfn_cuDevicePrimaryCtxRelease; +PFN_cuDeviceTotalMem pfn_cuDeviceTotalMem; +PFN_cuDeviceGetName pfn_cuDeviceGetName; +PFN_cuCtxGetApiVersion pfn_cuCtxGetApiVersion; +PFN_cuCtxSetCurrent pfn_cuCtxSetCurrent; +PFN_cuCtxGetCurrent pfn_cuCtxGetCurrent; +PFN_cuCtxGetDevice pfn_cuCtxGetDevice; +PFN_cuCtxGetExecAffinity pfn_cuCtxGetExecAffinity; +PFN_cuMemAlloc pfn_cuMemAlloc; +PFN_cuMemFree pfn_cuMemFree; +PFN_cuMemHostRegister pfn_cuMemHostRegister; +PFN_cuMemHostUnregister pfn_cuMemHostUnregister; +PFN_cuMemHostGetDevicePointer pfn_cuMemHostGetDevicePointer; +PFN_cuFlushGPUDirectRDMAWrites pfn_cuFlushGPUDirectRDMAWrites; + +static void *cudalib; +static unsigned int cuda_api_version; +static int cuda_driver_version; + +/* NVIDIA GPU vendor */ +#define NVIDIA_GPU_VENDOR_ID (0x10de) + +/* NVIDIA GPU device IDs */ +#define NVIDIA_GPU_A100_40GB_DEVICE_ID (0x20f1) +#define NVIDIA_GPU_A100_80GB_DEVICE_ID (0x20b5) + +#define NVIDIA_GPU_A30_24GB_DEVICE_ID (0x20b7) +#define NVIDIA_GPU_A10_24GB_DEVICE_ID (0x2236) + +#define NVIDIA_GPU_V100_32GB_DEVICE_ID (0x1db6) +#define NVIDIA_GPU_V100_16GB_DEVICE_ID (0x1db4) + +#define CUDA_MAX_ALLOCATION_NUM 512 + +#define GPU_PAGE_SHIFT 16 +#define GPU_PAGE_SIZE (1UL << GPU_PAGE_SHIFT) + +static RTE_LOG_REGISTER_DEFAULT(cuda_logtype, NOTICE); + +/* Helper macro for logging */ +#define rte_cuda_log(level, fmt, ...) \ + rte_log(RTE_LOG_ ## level, cuda_logtype, fmt "\n", ##__VA_ARGS__) + +#define rte_cuda_debug(fmt, ...) \ + rte_cuda_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \ + ##__VA_ARGS__) + +/* NVIDIA GPU address map */ +static struct rte_pci_id pci_id_cuda_map[] = { + { + RTE_PCI_DEVICE(NVIDIA_GPU_VENDOR_ID, + NVIDIA_GPU_A100_40GB_DEVICE_ID) + }, + { + RTE_PCI_DEVICE(NVIDIA_GPU_VENDOR_ID, + NVIDIA_GPU_A100_80GB_DEVICE_ID) + }, + { + RTE_PCI_DEVICE(NVIDIA_GPU_VENDOR_ID, + NVIDIA_GPU_A30_24GB_DEVICE_ID) + }, + { + RTE_PCI_DEVICE(NVIDIA_GPU_VENDOR_ID, + NVIDIA_GPU_A10_24GB_DEVICE_ID) + }, + { + RTE_PCI_DEVICE(NVIDIA_GPU_VENDOR_ID, + NVIDIA_GPU_V100_32GB_DEVICE_ID) + }, + { + RTE_PCI_DEVICE(NVIDIA_GPU_VENDOR_ID, + NVIDIA_GPU_V100_16GB_DEVICE_ID) + }, + { + .device_id = 0 + } +}; + +/* Device private info */ +struct cuda_info { + char gpu_name[RTE_DEV_NAME_MAX_LEN]; + CUdevice cu_dev; + int gdr_supported; + int gdr_write_ordering; + int gdr_flush_type; +}; + +/* Type of memory allocated by CUDA driver */ +enum mem_type { + GPU_MEM = 0, + CPU_REGISTERED, + GPU_REGISTERED /* Not used yet */ +}; + +/* key associated to a memory address */ +typedef uintptr_t cuda_ptr_key; + +/* Single entry of the memory list */ +struct mem_entry { + CUdeviceptr ptr_d; + void *ptr_h; + size_t size; + struct rte_gpu *dev; + CUcontext ctx; + cuda_ptr_key pkey; + enum mem_type mtype; + struct mem_entry *prev; + struct mem_entry *next; +}; + +static struct mem_entry *mem_alloc_list_head; +static struct mem_entry *mem_alloc_list_tail; +static uint32_t mem_alloc_list_last_elem; + +/* Load the CUDA symbols */ + +static int +cuda_loader(void) +{ + char cuda_path[1024]; + + if (getenv("CUDA_PATH_L") == NULL) + snprintf(cuda_path, 1024, "%s", "libcuda.so"); + else + snprintf(cuda_path, 1024, "%s%s", getenv("CUDA_PATH_L"), "libcuda.so"); + + cudalib = dlopen(cuda_path, RTLD_LAZY); + if (cudalib == NULL) { + rte_cuda_log(ERR, "Failed to find CUDA library in %s (CUDA_PATH_L=%s)", + cuda_path, getenv("CUDA_PATH_L")); + return -1; + } + + return 0; +} + +static int +cuda_sym_func_loader(void) +{ + if (cudalib == NULL) + return -1; + + sym_cuInit = dlsym(cudalib, "cuInit"); + if (sym_cuInit == NULL) { + rte_cuda_log(ERR, "Failed to load CUDA missing symbol cuInit"); + return -1; + } + + sym_cuDriverGetVersion = dlsym(cudalib, "cuDriverGetVersion"); + if (sym_cuDriverGetVersion == NULL) { + rte_cuda_log(ERR, "Failed to load CUDA missing symbol cuDriverGetVersion"); + return -1; + } + + sym_cuGetProcAddress = dlsym(cudalib, "cuGetProcAddress"); + if (sym_cuGetProcAddress == NULL) { + rte_cuda_log(ERR, "Failed to load CUDA missing symbol cuGetProcAddress"); + return -1; + } + + return 0; +} + +static int +cuda_pfn_func_loader(void) +{ + CUresult res; + + res = sym_cuGetProcAddress("cuGetErrorString", + (void **) (&pfn_cuGetErrorString), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuGetErrorString failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuGetErrorName", + (void **) (&pfn_cuGetErrorName), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuGetErrorName failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuPointerSetAttribute", + (void **) (&pfn_cuPointerSetAttribute), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuPointerSetAttribute failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuDeviceGetAttribute", + (void **) (&pfn_cuDeviceGetAttribute), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuDeviceGetAttribute failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuDeviceGetByPCIBusId", + (void **) (&pfn_cuDeviceGetByPCIBusId), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuDeviceGetByPCIBusId failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuDeviceGetName", + (void **) (&pfn_cuDeviceGetName), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuDeviceGetName failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuDevicePrimaryCtxRetain", + (void **) (&pfn_cuDevicePrimaryCtxRetain), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuDevicePrimaryCtxRetain failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuDevicePrimaryCtxRelease", + (void **) (&pfn_cuDevicePrimaryCtxRelease), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuDevicePrimaryCtxRelease failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuDeviceTotalMem", + (void **) (&pfn_cuDeviceTotalMem), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuDeviceTotalMem failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuCtxGetApiVersion", + (void **) (&pfn_cuCtxGetApiVersion), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuCtxGetApiVersion failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuCtxGetDevice", + (void **) (&pfn_cuCtxGetDevice), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuCtxGetDevice failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuCtxSetCurrent", + (void **) (&pfn_cuCtxSetCurrent), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuCtxSetCurrent failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuCtxGetCurrent", + (void **) (&pfn_cuCtxGetCurrent), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuCtxGetCurrent failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuCtxGetExecAffinity", + (void **) (&pfn_cuCtxGetExecAffinity), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuCtxGetExecAffinity failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuMemAlloc", + (void **) (&pfn_cuMemAlloc), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuMemAlloc failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuMemFree", + (void **) (&pfn_cuMemFree), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuMemFree failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuMemHostRegister", + (void **) (&pfn_cuMemHostRegister), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuMemHostRegister failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuMemHostUnregister", + (void **) (&pfn_cuMemHostUnregister), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuMemHostUnregister failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuMemHostGetDevicePointer", + (void **) (&pfn_cuMemHostGetDevicePointer), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve pfn_cuMemHostGetDevicePointer failed with %d", res); + return -1; + } + + res = sym_cuGetProcAddress("cuFlushGPUDirectRDMAWrites", + (void **) (&pfn_cuFlushGPUDirectRDMAWrites), cuda_driver_version, 0); + if (res != 0) { + rte_cuda_log(ERR, "Retrieve cuFlushGPUDirectRDMAWrites failed with %d", res); + return -1; + } + + return 0; +} + +/* Generate a key from a memory pointer */ +static cuda_ptr_key +get_hash_from_ptr(void *ptr) +{ + return (uintptr_t) ptr; +} + +static uint32_t +mem_list_count_item(void) +{ + return mem_alloc_list_last_elem; +} + +/* Initiate list of memory allocations if not done yet */ +static struct mem_entry * +mem_list_add_item(void) +{ + /* Initiate list of memory allocations if not done yet */ + if (mem_alloc_list_head == NULL) { + mem_alloc_list_head = rte_zmalloc(NULL, + sizeof(struct mem_entry), + RTE_CACHE_LINE_SIZE); + if (mem_alloc_list_head == NULL) { + rte_cuda_log(ERR, "Failed to allocate memory for memory list"); + return NULL; + } + + mem_alloc_list_head->next = NULL; + mem_alloc_list_head->prev = NULL; + mem_alloc_list_tail = mem_alloc_list_head; + } else { + struct mem_entry *mem_alloc_list_cur = rte_zmalloc(NULL, + sizeof(struct mem_entry), + RTE_CACHE_LINE_SIZE); + + if (mem_alloc_list_cur == NULL) { + rte_cuda_log(ERR, "Failed to allocate memory for memory list"); + return NULL; + } + + mem_alloc_list_tail->next = mem_alloc_list_cur; + mem_alloc_list_cur->prev = mem_alloc_list_tail; + mem_alloc_list_tail = mem_alloc_list_tail->next; + mem_alloc_list_tail->next = NULL; + } + + mem_alloc_list_last_elem++; + + return mem_alloc_list_tail; +} + +static struct mem_entry * +mem_list_find_item(cuda_ptr_key pk) +{ + struct mem_entry *mem_alloc_list_cur = NULL; + + if (mem_alloc_list_head == NULL) { + rte_cuda_log(ERR, "Memory list doesn't exist"); + return NULL; + } + + if (mem_list_count_item() == 0) { + rte_cuda_log(ERR, "No items in memory list"); + return NULL; + } + + mem_alloc_list_cur = mem_alloc_list_head; + + while (mem_alloc_list_cur != NULL) { + if (mem_alloc_list_cur->pkey == pk) + return mem_alloc_list_cur; + mem_alloc_list_cur = mem_alloc_list_cur->next; + } + + return mem_alloc_list_cur; +} + +static int +mem_list_del_item(cuda_ptr_key pk) +{ + struct mem_entry *mem_alloc_list_cur = NULL; + + mem_alloc_list_cur = mem_list_find_item(pk); + if (mem_alloc_list_cur == NULL) + return -EINVAL; + + /* if key is in head */ + if (mem_alloc_list_cur->prev == NULL) + mem_alloc_list_head = mem_alloc_list_cur->next; + else { + mem_alloc_list_cur->prev->next = mem_alloc_list_cur->next; + if (mem_alloc_list_cur->next != NULL) + mem_alloc_list_cur->next->prev = mem_alloc_list_cur->prev; + } + + rte_free(mem_alloc_list_cur); + + mem_alloc_list_last_elem--; + + return 0; +} + +static int +cuda_dev_info_get(struct rte_gpu *dev, struct rte_gpu_info *info) +{ + int ret = 0; + CUresult res; + struct rte_gpu_info parent_info; + CUexecAffinityParam affinityPrm; + const char *err_string; + struct cuda_info *private; + CUcontext current_ctx; + CUcontext input_ctx; + + if (dev == NULL) + return -ENODEV; + + /* Child initialization time probably called by rte_gpu_add_child() */ + if (dev->mpshared->info.parent != RTE_GPU_ID_NONE && dev->mpshared->dev_private == NULL) { + /* Store current ctx */ + res = pfn_cuCtxGetCurrent(¤t_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxGetCurrent failed with %s", err_string); + return -EPERM; + } + + /* Set child ctx as current ctx */ + input_ctx = (CUcontext)((uintptr_t)dev->mpshared->info.context); + res = pfn_cuCtxSetCurrent(input_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxSetCurrent input failed with %s", + err_string); + return -EPERM; + } + + /* + * Ctx capacity info + */ + + /* MPS compatible */ + res = pfn_cuCtxGetExecAffinity(&affinityPrm, CU_EXEC_AFFINITY_TYPE_SM_COUNT); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxGetExecAffinity failed with %s", err_string); + } + dev->mpshared->info.processor_count = (uint32_t)affinityPrm.param.smCount.val; + + ret = rte_gpu_info_get(dev->mpshared->info.parent, &parent_info); + if (ret) + return -ENODEV; + dev->mpshared->info.total_memory = parent_info.total_memory; + + /* + * GPU Device private info + */ + dev->mpshared->dev_private = rte_zmalloc(NULL, + sizeof(struct cuda_info), + RTE_CACHE_LINE_SIZE); + if (dev->mpshared->dev_private == NULL) { + rte_cuda_log(ERR, "Failed to allocate memory for GPU process private"); + return -EPERM; + } + + private = (struct cuda_info *)dev->mpshared->dev_private; + + res = pfn_cuCtxGetDevice(&(private->cu_dev)); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxGetDevice failed with %s", err_string); + return -EPERM; + } + + res = pfn_cuDeviceGetName(private->gpu_name, RTE_DEV_NAME_MAX_LEN, private->cu_dev); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuDeviceGetName failed with %s", err_string); + return -EPERM; + } + + /* Restore original ctx as current ctx */ + res = pfn_cuCtxSetCurrent(current_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxSetCurrent current failed with %s", + err_string); + return -EPERM; + } + } + + *info = dev->mpshared->info; + + return 0; +} + +/* + * GPU Memory + */ + +static int +cuda_mem_alloc(struct rte_gpu *dev, size_t size, void **ptr) +{ + CUresult res; + const char *err_string; + CUcontext current_ctx; + CUcontext input_ctx; + unsigned int flag = 1; + + if (dev == NULL) + return -ENODEV; + if (size == 0) + return -EINVAL; + + /* Store current ctx */ + res = pfn_cuCtxGetCurrent(¤t_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxGetCurrent failed with %s", + err_string); + return -EPERM; + } + + /* Set child ctx as current ctx */ + input_ctx = (CUcontext)((uintptr_t)dev->mpshared->info.context); + res = pfn_cuCtxSetCurrent(input_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxSetCurrent input failed with %s", + err_string); + return -EPERM; + } + + /* Get next memory list item */ + mem_alloc_list_tail = mem_list_add_item(); + if (mem_alloc_list_tail == NULL) + return -ENOMEM; + + /* Allocate memory */ + mem_alloc_list_tail->size = size; + res = pfn_cuMemAlloc(&(mem_alloc_list_tail->ptr_d), mem_alloc_list_tail->size); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxSetCurrent current failed with %s", + err_string); + return -EPERM; + } + + /* GPUDirect RDMA attribute required */ + res = pfn_cuPointerSetAttribute(&flag, + CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, + mem_alloc_list_tail->ptr_d); + if (res != 0) { + rte_cuda_log(ERR, "Could not set SYNC MEMOP attribute for " + "GPU memory at %"PRIu32", err %d", + (uint32_t) mem_alloc_list_tail->ptr_d, res); + return -EPERM; + } + + mem_alloc_list_tail->pkey = get_hash_from_ptr((void *) mem_alloc_list_tail->ptr_d); + mem_alloc_list_tail->ptr_h = NULL; + mem_alloc_list_tail->size = size; + mem_alloc_list_tail->dev = dev; + mem_alloc_list_tail->ctx = (CUcontext)((uintptr_t)dev->mpshared->info.context); + mem_alloc_list_tail->mtype = GPU_MEM; + + /* Restore original ctx as current ctx */ + res = pfn_cuCtxSetCurrent(current_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxSetCurrent current failed with %s", + err_string); + return -EPERM; + } + + *ptr = (void *) mem_alloc_list_tail->ptr_d; + + return 0; +} + +static int +cuda_mem_register(struct rte_gpu *dev, size_t size, void *ptr) +{ + CUresult res; + const char *err_string; + CUcontext current_ctx; + CUcontext input_ctx; + unsigned int flag = 1; + int use_ptr_h = 0; + + if (dev == NULL) + return -ENODEV; + + if (size == 0 || ptr == NULL) + return -EINVAL; + + /* Store current ctx */ + res = pfn_cuCtxGetCurrent(¤t_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxGetCurrent failed with %s", + err_string); + return -EPERM; + } + + /* Set child ctx as current ctx */ + input_ctx = (CUcontext)((uintptr_t)dev->mpshared->info.context); + res = pfn_cuCtxSetCurrent(input_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxSetCurrent input failed with %s", + err_string); + return -EPERM; + } + + /* Get next memory list item */ + mem_alloc_list_tail = mem_list_add_item(); + if (mem_alloc_list_tail == NULL) + return -ENOMEM; + + /* Allocate memory */ + mem_alloc_list_tail->size = size; + mem_alloc_list_tail->ptr_h = ptr; + + res = pfn_cuMemHostRegister(mem_alloc_list_tail->ptr_h, + mem_alloc_list_tail->size, + CU_MEMHOSTREGISTER_PORTABLE | CU_MEMHOSTREGISTER_DEVICEMAP); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuMemHostRegister failed with %s ptr %p size %zd", + err_string, + mem_alloc_list_tail->ptr_h, + mem_alloc_list_tail->size); + return -EPERM; + } + + res = pfn_cuDeviceGetAttribute(&(use_ptr_h), + CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM, + ((struct cuda_info *)(dev->mpshared->dev_private))->cu_dev); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuDeviceGetAttribute failed with %s", + err_string); + return -EPERM; + } + + if (use_ptr_h == 0) { + res = pfn_cuMemHostGetDevicePointer(&(mem_alloc_list_tail->ptr_d), + mem_alloc_list_tail->ptr_h, 0); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuMemHostGetDevicePointer failed with %s", + err_string); + return -EPERM; + } + + if ((uintptr_t) mem_alloc_list_tail->ptr_d != (uintptr_t) mem_alloc_list_tail->ptr_h) { + rte_cuda_log(ERR, "Host input pointer is different wrt GPU registered pointer"); + return -ENOTSUP; + } + } else { + mem_alloc_list_tail->ptr_d = (CUdeviceptr) mem_alloc_list_tail->ptr_h; + } + + /* GPUDirect RDMA attribute required */ + res = pfn_cuPointerSetAttribute(&flag, + CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, + mem_alloc_list_tail->ptr_d); + if (res != 0) { + rte_cuda_log(ERR, "Could not set SYNC MEMOP attribute for GPU memory at %"PRIu32", err %d", + (uint32_t) mem_alloc_list_tail->ptr_d, res); + return -EPERM; + } + + mem_alloc_list_tail->pkey = get_hash_from_ptr((void *) mem_alloc_list_tail->ptr_h); + mem_alloc_list_tail->size = size; + mem_alloc_list_tail->dev = dev; + mem_alloc_list_tail->ctx = (CUcontext)((uintptr_t)dev->mpshared->info.context); + mem_alloc_list_tail->mtype = CPU_REGISTERED; + + /* Restore original ctx as current ctx */ + res = pfn_cuCtxSetCurrent(current_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxSetCurrent current failed with %s", + err_string); + return -EPERM; + } + + return 0; +} + +static int +cuda_mem_free(struct rte_gpu *dev, void *ptr) +{ + CUresult res; + struct mem_entry *mem_item; + const char *err_string; + cuda_ptr_key hk; + + if (dev == NULL) + return -ENODEV; + + if (ptr == NULL) + return -EINVAL; + + hk = get_hash_from_ptr((void *) ptr); + + mem_item = mem_list_find_item(hk); + if (mem_item == NULL) { + rte_cuda_log(ERR, "Memory address 0x%p not found in driver memory", ptr); + return -EPERM; + } + + if (mem_item->mtype == GPU_MEM) { + res = pfn_cuMemFree(mem_item->ptr_d); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuMemFree current failed with %s", + err_string); + return -EPERM; + } + + return mem_list_del_item(hk); + } + + rte_cuda_log(ERR, "Memory type %d not supported", mem_item->mtype); + + return -EPERM; +} + +static int +cuda_mem_unregister(struct rte_gpu *dev, void *ptr) +{ + CUresult res; + struct mem_entry *mem_item; + const char *err_string; + cuda_ptr_key hk; + + if (dev == NULL) + return -ENODEV; + + if (ptr == NULL) + return -EINVAL; + + hk = get_hash_from_ptr((void *) ptr); + + mem_item = mem_list_find_item(hk); + if (mem_item == NULL) { + rte_cuda_log(ERR, "Memory address 0x%p not found in driver memory", ptr); + return -EPERM; + } + + if (mem_item->mtype == CPU_REGISTERED) { + res = pfn_cuMemHostUnregister(ptr); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuMemHostUnregister current failed with %s", + err_string); + return -EPERM; + } + + return mem_list_del_item(hk); + } + + rte_cuda_log(ERR, "Memory type %d not supported", mem_item->mtype); + + return -EPERM; +} + +static int +cuda_dev_close(struct rte_gpu *dev) +{ + if (dev == NULL) + return -EINVAL; + + rte_free(dev->mpshared->dev_private); + + return 0; +} + +static int +cuda_wmb(struct rte_gpu *dev) +{ + CUresult res; + const char *err_string; + CUcontext current_ctx; + CUcontext input_ctx; + struct cuda_info *private; + + if (dev == NULL) + return -ENODEV; + + private = (struct cuda_info *)dev->mpshared->dev_private; + + if (private->gdr_write_ordering != CU_GPU_DIRECT_RDMA_WRITES_ORDERING_NONE) { + /* + * No need to explicitly force the write ordering because + * the device natively supports it + */ + return 0; + } + + if (private->gdr_flush_type != CU_FLUSH_GPU_DIRECT_RDMA_WRITES_OPTION_HOST) { + /* + * Can't flush GDR writes with cuFlushGPUDirectRDMAWrites CUDA function. + * Application needs to use alternative methods. + */ + rte_cuda_log(WARNING, "Can't flush GDR writes with cuFlushGPUDirectRDMAWrites CUDA function." + "Application needs to use alternative methods."); + return -ENOTSUP; + } + + /* Store current ctx */ + res = pfn_cuCtxGetCurrent(¤t_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxGetCurrent failed with %s", + err_string); + return -EPERM; + } + + /* Set child ctx as current ctx */ + input_ctx = (CUcontext)((uintptr_t)dev->mpshared->info.context); + res = pfn_cuCtxSetCurrent(input_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxSetCurrent input failed with %s", + err_string); + return -EPERM; + } + + res = pfn_cuFlushGPUDirectRDMAWrites(CU_FLUSH_GPU_DIRECT_RDMA_WRITES_TARGET_CURRENT_CTX, + CU_FLUSH_GPU_DIRECT_RDMA_WRITES_TO_ALL_DEVICES); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuFlushGPUDirectRDMAWrites current failed with %s", + err_string); + return -EPERM; + } + + /* Restore original ctx as current ctx */ + res = pfn_cuCtxSetCurrent(current_ctx); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuCtxSetCurrent current failed with %s", + err_string); + return -EPERM; + } + + return 0; +} + +static int +cuda_gpu_probe(__rte_unused struct rte_pci_driver *pci_drv, struct rte_pci_device *pci_dev) +{ + struct rte_gpu *dev = NULL; + CUresult res; + CUdevice cu_dev_id; + CUcontext pctx; + char dev_name[RTE_DEV_NAME_MAX_LEN]; + const char *err_string; + int processor_count = 0; + struct cuda_info *private; + + if (pci_dev == NULL) { + rte_cuda_log(ERR, "NULL PCI device"); + return -EINVAL; + } + + rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name)); + + /* Allocate memory to be used privately by drivers */ + dev = rte_gpu_allocate(pci_dev->device.name); + if (dev == NULL) + return -ENODEV; + + /* Initialize values only for the first CUDA driver call */ + if (dev->mpshared->info.dev_id == 0) { + mem_alloc_list_head = NULL; + mem_alloc_list_tail = NULL; + mem_alloc_list_last_elem = 0; + + /* Load libcuda.so library */ + if (cuda_loader()) { + rte_cuda_log(ERR, "CUDA Driver library not found"); + return -ENOTSUP; + } + + /* Load initial CUDA functions */ + if (cuda_sym_func_loader()) { + rte_cuda_log(ERR, "CUDA functions not found in library"); + return -ENOTSUP; + } + + /* + * Required to initialize the CUDA Driver. + * Multiple calls of cuInit() will return immediately + * without making any relevant change + */ + sym_cuInit(0); + + res = sym_cuDriverGetVersion(&cuda_driver_version); + if (res != 0) { + rte_cuda_log(ERR, "cuDriverGetVersion failed with %d", res); + return -ENOTSUP; + } + + if (cuda_driver_version < CUDA_DRIVER_MIN_VERSION) { + rte_cuda_log(ERR, "CUDA Driver version found is %d," + "Minimum requirement is %d", + cuda_driver_version, CUDA_DRIVER_MIN_VERSION); + return -ENOTSUP; + } + + if (cuda_pfn_func_loader()) { + rte_cuda_log(ERR, "CUDA PFN functions not found in library"); + return -ENOTSUP; + } + } + + /* Fill HW specific part of device structure */ + dev->device = &pci_dev->device; + dev->mpshared->info.numa_node = pci_dev->device.numa_node; + + /* Get NVIDIA GPU Device descriptor */ + res = pfn_cuDeviceGetByPCIBusId(&cu_dev_id, dev->device->name); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuDeviceGetByPCIBusId name %s failed with %d: %s", + dev->device->name, res, err_string); + return -EPERM; + } + + res = pfn_cuDevicePrimaryCtxRetain(&pctx, cu_dev_id); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuDevicePrimaryCtxRetain name %s failed with %d: %s", + dev->device->name, res, err_string); + return -EPERM; + } + + res = pfn_cuCtxGetApiVersion(pctx, &cuda_api_version); + if (res != 0) { + rte_cuda_log(ERR, "cuCtxGetApiVersion failed with %d", res); + return -ENOTSUP; + } + + if (cuda_api_version < CUDA_API_MIN_VERSION) { + rte_cuda_log(ERR, "CUDA API version found is %d Minimum requirement is %d", + cuda_api_version, CUDA_API_MIN_VERSION); + return -ENOTSUP; + } + + dev->mpshared->info.context = (uint64_t) pctx; + + /* + * GPU Device generic info + */ + + /* Processor count */ + res = pfn_cuDeviceGetAttribute(&(processor_count), + CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, + cu_dev_id); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuDeviceGetAttribute failed with %s", + err_string); + return -EPERM; + } + dev->mpshared->info.processor_count = (uint32_t)processor_count; + + /* Total memory */ + res = pfn_cuDeviceTotalMem(&dev->mpshared->info.total_memory, cu_dev_id); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuDeviceTotalMem failed with %s", + err_string); + return -EPERM; + } + + /* + * GPU Device private info + */ + dev->mpshared->dev_private = rte_zmalloc(NULL, + sizeof(struct cuda_info), + RTE_CACHE_LINE_SIZE); + if (dev->mpshared->dev_private == NULL) { + rte_cuda_log(ERR, "Failed to allocate memory for GPU process private"); + return -ENOMEM; + } + + private = (struct cuda_info *)dev->mpshared->dev_private; + private->cu_dev = cu_dev_id; + res = pfn_cuDeviceGetName(private->gpu_name, + RTE_DEV_NAME_MAX_LEN, + cu_dev_id); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuDeviceGetName failed with %s", + err_string); + return -EPERM; + } + + res = pfn_cuDeviceGetAttribute(&(private->gdr_supported), + CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_SUPPORTED, + cu_dev_id); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuDeviceGetAttribute failed with %s", + err_string); + return -EPERM; + } + + if (private->gdr_supported == 0) + rte_cuda_log(WARNING, "GPU %s doesn't support GPUDirect RDMA", + pci_dev->device.name); + + res = pfn_cuDeviceGetAttribute(&(private->gdr_write_ordering), + CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_WRITES_ORDERING, + cu_dev_id); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, + "cuDeviceGetAttribute failed with %s", + err_string); + return -EPERM; + } + + if (private->gdr_write_ordering == CU_GPU_DIRECT_RDMA_WRITES_ORDERING_NONE) { + res = pfn_cuDeviceGetAttribute(&(private->gdr_flush_type), + CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_FLUSH_WRITES_OPTIONS, + cu_dev_id); + if (res != 0) { + pfn_cuGetErrorString(res, &(err_string)); + rte_cuda_log(ERR, "cuDeviceGetAttribute failed with %s", + err_string); + return -EPERM; + } + + if (private->gdr_flush_type != CU_FLUSH_GPU_DIRECT_RDMA_WRITES_OPTION_HOST) { + rte_cuda_log(ERR, "GPUDirect RDMA flush writes API is not supported"); + } + } + + dev->ops.dev_info_get = cuda_dev_info_get; + dev->ops.dev_close = cuda_dev_close; + dev->ops.mem_alloc = cuda_mem_alloc; + dev->ops.mem_free = cuda_mem_free; + dev->ops.mem_register = cuda_mem_register; + dev->ops.mem_unregister = cuda_mem_unregister; + dev->ops.wmb = cuda_wmb; + + rte_gpu_complete_new(dev); + + rte_cuda_debug("dev id = %u name = %s", + dev->mpshared->info.dev_id, private->gpu_name); + + return 0; +} + +static int +cuda_gpu_remove(struct rte_pci_device *pci_dev) +{ + struct rte_gpu *dev; + int ret; + uint8_t gpu_id; + + if (pci_dev == NULL) + return -EINVAL; + + dev = rte_gpu_get_by_name(pci_dev->device.name); + if (dev == NULL) { + rte_cuda_log(ERR, "Couldn't find HW dev \"%s\" to uninitialise it", + pci_dev->device.name); + return -ENODEV; + } + gpu_id = dev->mpshared->info.dev_id; + + /* release dev from library */ + ret = rte_gpu_release(dev); + if (ret) + rte_cuda_log(ERR, "Device %i failed to uninit: %i", gpu_id, ret); + + rte_cuda_debug("Destroyed dev = %u", gpu_id); + + return 0; +} + +static struct rte_pci_driver rte_cuda_driver = { + .id_table = pci_id_cuda_map, + .drv_flags = RTE_PCI_DRV_WC_ACTIVATE, + .probe = cuda_gpu_probe, + .remove = cuda_gpu_remove, +}; + +RTE_PMD_REGISTER_PCI(gpu_cuda, rte_cuda_driver); +RTE_PMD_REGISTER_PCI_TABLE(gpu_cuda, pci_id_cuda_map); +RTE_PMD_REGISTER_KMOD_DEP(gpu_cuda, "* nvidia & (nv_peer_mem | nvpeer_mem)"); diff --git a/drivers/gpu/cuda/meson.build b/drivers/gpu/cuda/meson.build new file mode 100644 index 0000000000..4bb3e14cd2 --- /dev/null +++ b/drivers/gpu/cuda/meson.build @@ -0,0 +1,18 @@ +# SPDX-License-Identifier: BSD-3-Clause +# Copyright (c) 2021 NVIDIA Corporation & Affiliates + +if not is_linux + build = false + reason = 'only supported on Linux' +endif + +cuda_h_found = cc.has_header('cuda.h') +cuda_typeh_found = cc.has_header('cudaTypedefs.h') + +if not cuda_h_found or not cuda_typeh_found + build = false + reason = 'missing dependency cuda headers cuda.h and cudaTypedefs.h' +endif + +deps += ['gpudev','pci','bus_pci'] +sources = files('cuda.c') diff --git a/drivers/gpu/cuda/version.map b/drivers/gpu/cuda/version.map new file mode 100644 index 0000000000..4a76d1d52d --- /dev/null +++ b/drivers/gpu/cuda/version.map @@ -0,0 +1,3 @@ +DPDK_21 { + local: *; +}; diff --git a/drivers/gpu/meson.build b/drivers/gpu/meson.build index e51ad3381b..601bedcd61 100644 --- a/drivers/gpu/meson.build +++ b/drivers/gpu/meson.build @@ -1,4 +1,4 @@ # SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2021 NVIDIA Corporation & Affiliates -drivers = [] +drivers = [ 'cuda' ] -- 2.17.1