From: Wenjun Wu <wenjun1.wu@intel.com>
To: dev@dpdk.org, jingjing.wu@intel.com, beilei.xing@intel.com
Cc: mingxia.liu@intel.com, wenzhuo.lu@intel.com,
Wenjun Wu <wenjun1.wu@intel.com>,
Wenjing Qiao <wenjing.qiao@intel.com>
Subject: [PATCH v5 1/1] common/idpf: add AVX512 data path for split queue model
Date: Fri, 13 Jan 2023 01:51:19 +0000 [thread overview]
Message-ID: <20230113015119.3279019-2-wenjun1.wu@intel.com> (raw)
In-Reply-To: <20230113015119.3279019-1-wenjun1.wu@intel.com>
Add support of AVX512 data path for split queue model.
Signed-off-by: Wenjun Wu <wenjun1.wu@intel.com>
Reviewed-by: Wenjing Qiao <wenjing.qiao@intel.com>
Acked-by: Wenzhuo Lu <wenzhuo.lu@intel.com>
---
drivers/common/idpf/idpf_common_rxtx.c | 22 +-
drivers/common/idpf/idpf_common_rxtx.h | 19 +-
drivers/common/idpf/idpf_common_rxtx_avx512.c | 797 +++++++++++++++++-
drivers/common/idpf/version.map | 5 +-
drivers/net/idpf/idpf_rxtx.c | 46 +-
drivers/net/idpf/idpf_rxtx_vec_common.h | 55 +-
6 files changed, 889 insertions(+), 55 deletions(-)
diff --git a/drivers/common/idpf/idpf_common_rxtx.c b/drivers/common/idpf/idpf_common_rxtx.c
index d1fa5884db..3a9a32dddd 100644
--- a/drivers/common/idpf/idpf_common_rxtx.c
+++ b/drivers/common/idpf/idpf_common_rxtx.c
@@ -161,6 +161,9 @@ reset_split_rx_bufq(struct idpf_rx_queue *rxq)
/* The number of descriptors which can be refilled. */
rxq->nb_rx_hold = rxq->nb_rx_desc - 1;
+ rxq->rxrearm_nb = 0;
+ rxq->rxrearm_start = 0;
+
rxq->bufq1 = NULL;
rxq->bufq2 = NULL;
}
@@ -236,6 +239,10 @@ reset_split_tx_descq(struct idpf_tx_queue *txq)
txq->last_desc_cleaned = 0;
txq->sw_tail = 0;
txq->nb_free = txq->nb_tx_desc - 1;
+
+ memset(txq->ctype, 0, sizeof(txq->ctype));
+ txq->next_dd = txq->rs_thresh - 1;
+ txq->next_rs = txq->rs_thresh - 1;
}
void
@@ -1428,12 +1435,12 @@ release_rxq_mbufs_vec(struct idpf_rx_queue *rxq)
memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
}
-static const struct idpf_rxq_ops def_singleq_rx_ops_vec = {
+static const struct idpf_rxq_ops def_rx_ops_vec = {
.release_mbufs = release_rxq_mbufs_vec,
};
static inline int
-idpf_singleq_rx_vec_setup_default(struct idpf_rx_queue *rxq)
+idpf_rxq_vec_setup_default(struct idpf_rx_queue *rxq)
{
uintptr_t p;
struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
@@ -1453,6 +1460,13 @@ idpf_singleq_rx_vec_setup_default(struct idpf_rx_queue *rxq)
int __rte_cold
idpf_singleq_rx_vec_setup(struct idpf_rx_queue *rxq)
{
- rxq->ops = &def_singleq_rx_ops_vec;
- return idpf_singleq_rx_vec_setup_default(rxq);
+ rxq->ops = &def_rx_ops_vec;
+ return idpf_rxq_vec_setup_default(rxq);
+}
+
+int __rte_cold
+idpf_splitq_rx_vec_setup(struct idpf_rx_queue *rxq)
+{
+ rxq->bufq2->ops = &def_rx_ops_vec;
+ return idpf_rxq_vec_setup_default(rxq->bufq2);
}
diff --git a/drivers/common/idpf/idpf_common_rxtx.h b/drivers/common/idpf/idpf_common_rxtx.h
index 720025fbe1..d44d92101a 100644
--- a/drivers/common/idpf/idpf_common_rxtx.h
+++ b/drivers/common/idpf/idpf_common_rxtx.h
@@ -52,6 +52,8 @@
#define IDPF_VPMD_TX_MAX_BURST 32
#define IDPF_VPMD_DESCS_PER_LOOP 4
#define IDPF_RXQ_REARM_THRESH 64
+#define IDPD_TXQ_SCAN_CQ_THRESH 64
+#define IDPF_TX_CTYPE_NUM 8
/* MTS */
#define GLTSYN_CMD_SYNC_0_0 (PF_TIMESYNC_BASE + 0x0)
@@ -185,6 +187,7 @@ struct idpf_tx_queue {
uint32_t tx_start_qid;
uint8_t expected_gen_id;
struct idpf_tx_queue *complq;
+ uint16_t ctype[IDPF_TX_CTYPE_NUM];
};
/* Offload features */
@@ -203,6 +206,12 @@ struct idpf_tx_vec_entry {
struct rte_mbuf *mbuf;
};
+union idpf_tx_desc {
+ struct idpf_base_tx_desc *tx_ring;
+ struct idpf_flex_tx_sched_desc *desc_ring;
+ struct idpf_splitq_tx_compl_desc *compl_ring;
+};
+
struct idpf_rxq_ops {
void (*release_mbufs)(struct idpf_rx_queue *rxq);
};
@@ -265,14 +274,22 @@ uint16_t idpf_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
__rte_internal
int idpf_singleq_rx_vec_setup(struct idpf_rx_queue *rxq);
__rte_internal
-int idpf_singleq_tx_vec_setup_avx512(struct idpf_tx_queue *txq);
+int idpf_splitq_rx_vec_setup(struct idpf_rx_queue *rxq);
+__rte_internal
+int idpf_tx_vec_setup_avx512(struct idpf_tx_queue *txq);
__rte_internal
uint16_t idpf_singleq_recv_pkts_avx512(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
__rte_internal
+uint16_t idpf_splitq_recv_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
+__rte_internal
uint16_t idpf_singleq_xmit_pkts_avx512(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
+__rte_internal
+uint16_t idpf_splitq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts);
#endif /* _IDPF_COMMON_RXTX_H_ */
diff --git a/drivers/common/idpf/idpf_common_rxtx_avx512.c b/drivers/common/idpf/idpf_common_rxtx_avx512.c
index 6ae0e14d2f..8ca2bd0dc3 100644
--- a/drivers/common/idpf/idpf_common_rxtx_avx512.c
+++ b/drivers/common/idpf/idpf_common_rxtx_avx512.c
@@ -539,8 +539,462 @@ idpf_singleq_recv_pkts_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
return _idpf_singleq_recv_raw_pkts_avx512(rx_queue, rx_pkts, nb_pkts);
}
+static __rte_always_inline void
+idpf_splitq_rearm_common(struct idpf_rx_queue *rx_bufq)
+{
+ struct rte_mbuf **rxp = &rx_bufq->sw_ring[rx_bufq->rxrearm_start];
+ volatile union virtchnl2_rx_buf_desc *rxdp = rx_bufq->rx_ring;
+ uint16_t rx_id;
+ int i;
+
+ rxdp += rx_bufq->rxrearm_start;
+
+ /* Pull 'n' more MBUFs into the software ring */
+ if (rte_mempool_get_bulk(rx_bufq->mp,
+ (void *)rxp,
+ IDPF_RXQ_REARM_THRESH) < 0) {
+ if (rx_bufq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >=
+ rx_bufq->nb_rx_desc) {
+ __m128i dma_addr0;
+
+ dma_addr0 = _mm_setzero_si128();
+ for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) {
+ rxp[i] = &rx_bufq->fake_mbuf;
+ _mm_store_si128((__m128i *)&rxdp[i],
+ dma_addr0);
+ }
+ }
+ rte_atomic64_add(&rx_bufq->rx_stats.mbuf_alloc_failed, IDPF_RXQ_REARM_THRESH);
+ return;
+ }
+
+ /* Initialize the mbufs in vector, process 8 mbufs in one loop */
+ for (i = 0; i < IDPF_RXQ_REARM_THRESH;
+ i += 8, rxp += 8, rxdp += 8) {
+ rxdp[0].split_rd.pkt_addr = rxp[0]->buf_iova + RTE_PKTMBUF_HEADROOM;
+ rxdp[1].split_rd.pkt_addr = rxp[1]->buf_iova + RTE_PKTMBUF_HEADROOM;
+ rxdp[2].split_rd.pkt_addr = rxp[2]->buf_iova + RTE_PKTMBUF_HEADROOM;
+ rxdp[3].split_rd.pkt_addr = rxp[3]->buf_iova + RTE_PKTMBUF_HEADROOM;
+ rxdp[4].split_rd.pkt_addr = rxp[4]->buf_iova + RTE_PKTMBUF_HEADROOM;
+ rxdp[5].split_rd.pkt_addr = rxp[5]->buf_iova + RTE_PKTMBUF_HEADROOM;
+ rxdp[6].split_rd.pkt_addr = rxp[6]->buf_iova + RTE_PKTMBUF_HEADROOM;
+ rxdp[7].split_rd.pkt_addr = rxp[7]->buf_iova + RTE_PKTMBUF_HEADROOM;
+ }
+
+ rx_bufq->rxrearm_start += IDPF_RXQ_REARM_THRESH;
+ if (rx_bufq->rxrearm_start >= rx_bufq->nb_rx_desc)
+ rx_bufq->rxrearm_start = 0;
+
+ rx_bufq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH;
+
+ rx_id = (uint16_t)((rx_bufq->rxrearm_start == 0) ?
+ (rx_bufq->nb_rx_desc - 1) : (rx_bufq->rxrearm_start - 1));
+
+ /* Update the tail pointer on the NIC */
+ IDPF_PCI_REG_WRITE(rx_bufq->qrx_tail, rx_id);
+}
+
+static __rte_always_inline void
+idpf_splitq_rearm(struct idpf_rx_queue *rx_bufq)
+{
+ int i;
+ uint16_t rx_id;
+ volatile union virtchnl2_rx_buf_desc *rxdp = rx_bufq->rx_ring;
+ struct rte_mempool_cache *cache =
+ rte_mempool_default_cache(rx_bufq->mp, rte_lcore_id());
+ struct rte_mbuf **rxp = &rx_bufq->sw_ring[rx_bufq->rxrearm_start];
+
+ rxdp += rx_bufq->rxrearm_start;
+
+ if (unlikely(!cache))
+ return idpf_splitq_rearm_common(rx_bufq);
+
+ /* We need to pull 'n' more MBUFs into the software ring from mempool
+ * We inline the mempool function here, so we can vectorize the copy
+ * from the cache into the shadow ring.
+ */
+
+ /* Can this be satisfied from the cache? */
+ if (cache->len < IDPF_RXQ_REARM_THRESH) {
+ /* No. Backfill the cache first, and then fill from it */
+ uint32_t req = IDPF_RXQ_REARM_THRESH + (cache->size -
+ cache->len);
+
+ /* How many do we require i.e. number to fill the cache + the request */
+ int ret = rte_mempool_ops_dequeue_bulk
+ (rx_bufq->mp, &cache->objs[cache->len], req);
+ if (ret == 0) {
+ cache->len += req;
+ } else {
+ if (rx_bufq->rxrearm_nb + IDPF_RXQ_REARM_THRESH >=
+ rx_bufq->nb_rx_desc) {
+ __m128i dma_addr0;
+
+ dma_addr0 = _mm_setzero_si128();
+ for (i = 0; i < IDPF_VPMD_DESCS_PER_LOOP; i++) {
+ rxp[i] = &rx_bufq->fake_mbuf;
+ _mm_storeu_si128((__m128i *)&rxdp[i],
+ dma_addr0);
+ }
+ }
+ rte_atomic64_add(&rx_bufq->rx_stats.mbuf_alloc_failed, IDPF_RXQ_REARM_THRESH);
+ return;
+ }
+ }
+
+ const __m512i iova_offsets = _mm512_set1_epi64(offsetof
+ (struct rte_mbuf, buf_iova));
+ const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
+
+ /* Initialize the mbufs in vector, process 8 mbufs in one loop, taking
+ * from mempool cache and populating both shadow and HW rings
+ */
+ for (i = 0; i < IDPF_RXQ_REARM_THRESH / IDPF_DESCS_PER_LOOP_AVX; i++) {
+ const __m512i mbuf_ptrs = _mm512_loadu_si512
+ (&cache->objs[cache->len - IDPF_DESCS_PER_LOOP_AVX]);
+ _mm512_storeu_si512(rxp, mbuf_ptrs);
+
+ const __m512i iova_base_addrs = _mm512_i64gather_epi64
+ (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
+ 0, /* base */
+ 1 /* scale */);
+ const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
+ headroom);
+
+ const __m512i iova_addrs_1 = _mm512_bsrli_epi128(iova_addrs, 8);
+
+ rxdp[0].split_rd.pkt_addr =
+ _mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs, 0));
+ rxdp[1].split_rd.pkt_addr =
+ _mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs_1, 0));
+ rxdp[2].split_rd.pkt_addr =
+ _mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs, 1));
+ rxdp[3].split_rd.pkt_addr =
+ _mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs_1, 1));
+ rxdp[4].split_rd.pkt_addr =
+ _mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs, 2));
+ rxdp[5].split_rd.pkt_addr =
+ _mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs_1, 2));
+ rxdp[6].split_rd.pkt_addr =
+ _mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs, 3));
+ rxdp[7].split_rd.pkt_addr =
+ _mm_cvtsi128_si64(_mm512_extracti32x4_epi32(iova_addrs_1, 3));
+
+ rxp += IDPF_DESCS_PER_LOOP_AVX;
+ rxdp += IDPF_DESCS_PER_LOOP_AVX;
+ cache->len -= IDPF_DESCS_PER_LOOP_AVX;
+ }
+
+ rx_bufq->rxrearm_start += IDPF_RXQ_REARM_THRESH;
+ if (rx_bufq->rxrearm_start >= rx_bufq->nb_rx_desc)
+ rx_bufq->rxrearm_start = 0;
+
+ rx_bufq->rxrearm_nb -= IDPF_RXQ_REARM_THRESH;
+
+ rx_id = (uint16_t)((rx_bufq->rxrearm_start == 0) ?
+ (rx_bufq->nb_rx_desc - 1) : (rx_bufq->rxrearm_start - 1));
+
+ /* Update the tail pointer on the NIC */
+ IDPF_PCI_REG_WRITE(rx_bufq->qrx_tail, rx_id);
+}
+
+static __rte_always_inline uint16_t
+_idpf_splitq_recv_raw_pkts_avx512(struct idpf_rx_queue *rxq,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ const uint32_t *type_table = rxq->adapter->ptype_tbl;
+ const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
+ rxq->bufq2->mbuf_initializer);
+ /* only handle bufq2 here */
+ struct rte_mbuf **sw_ring = &rxq->bufq2->sw_ring[rxq->rx_tail];
+ volatile union virtchnl2_rx_desc *rxdp = rxq->rx_ring;
+
+ rxdp += rxq->rx_tail;
+
+ rte_prefetch0(rxdp);
+
+ /* nb_pkts has to be floor-aligned to IDPF_DESCS_PER_LOOP_AVX */
+ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IDPF_DESCS_PER_LOOP_AVX);
+
+ /* See if we need to rearm the RX queue - gives the prefetch a bit
+ * of time to act
+ */
+ if (rxq->bufq2->rxrearm_nb > IDPF_RXQ_REARM_THRESH)
+ idpf_splitq_rearm(rxq->bufq2);
+
+ /* Before we start moving massive data around, check to see if
+ * there is actually a packet available
+ */
+ if (((rxdp->flex_adv_nic_3_wb.pktlen_gen_bufq_id &
+ VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_M) >>
+ VIRTCHNL2_RX_FLEX_DESC_ADV_GEN_S) != rxq->expected_gen_id)
+ return 0;
+
+ const __m512i dd_check = _mm512_set1_epi64(1);
+ const __m512i gen_check = _mm512_set1_epi64((uint64_t)1<<46);
+
+ /* mask to shuffle from desc. to mbuf (4 descriptors)*/
+ const __m512i shuf_msk =
+ _mm512_set_epi32
+ (/* 1st descriptor */
+ 0xFFFFFFFF, /* octet 4~7, 32bits rss */
+ 0xFFFF0504, /* octet 2~3, low 16 bits vlan_macip */
+ /* octet 15~14, 16 bits data_len */
+ 0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
+ /* octet 15~14, low 16 bits pkt_len */
+ 0xFFFFFFFF, /* pkt_type set as unknown */
+ /* 2nd descriptor */
+ 0xFFFFFFFF, /* octet 4~7, 32bits rss */
+ 0xFFFF0504, /* octet 2~3, low 16 bits vlan_macip */
+ /* octet 15~14, 16 bits data_len */
+ 0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
+ /* octet 15~14, low 16 bits pkt_len */
+ 0xFFFFFFFF, /* pkt_type set as unknown */
+ /* 3rd descriptor */
+ 0xFFFFFFFF, /* octet 4~7, 32bits rss */
+ 0xFFFF0504, /* octet 2~3, low 16 bits vlan_macip */
+ /* octet 15~14, 16 bits data_len */
+ 0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
+ /* octet 15~14, low 16 bits pkt_len */
+ 0xFFFFFFFF, /* pkt_type set as unknown */
+ /* 4th descriptor */
+ 0xFFFFFFFF, /* octet 4~7, 32bits rss */
+ 0xFFFF0504, /* octet 2~3, low 16 bits vlan_macip */
+ /* octet 15~14, 16 bits data_len */
+ 0xFFFF0504, /* skip high 16 bits pkt_len, zero out */
+ /* octet 15~14, low 16 bits pkt_len */
+ 0xFFFFFFFF /* pkt_type set as unknown */
+ );
+ /**
+ * compile-time check the above crc and shuffle layout is correct.
+ * NOTE: the first field (lowest address) is given last in set_epi
+ * calls above.
+ */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
+ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
+
+ uint16_t i, received;
+
+ for (i = 0, received = 0; i < nb_pkts;
+ i += IDPF_DESCS_PER_LOOP_AVX,
+ rxdp += IDPF_DESCS_PER_LOOP_AVX) {
+ /* step 1, copy over 8 mbuf pointers to rx_pkts array */
+ _mm256_storeu_si256((void *)&rx_pkts[i],
+ _mm256_loadu_si256((void *)&sw_ring[i]));
+#ifdef RTE_ARCH_X86_64
+ _mm256_storeu_si256
+ ((void *)&rx_pkts[i + 4],
+ _mm256_loadu_si256((void *)&sw_ring[i + 4]));
+#endif
+
+ __m512i raw_desc0_3, raw_desc4_7;
+ const __m128i raw_desc7 =
+ _mm_load_si128((void *)(rxdp + 7));
+ rte_compiler_barrier();
+ const __m128i raw_desc6 =
+ _mm_load_si128((void *)(rxdp + 6));
+ rte_compiler_barrier();
+ const __m128i raw_desc5 =
+ _mm_load_si128((void *)(rxdp + 5));
+ rte_compiler_barrier();
+ const __m128i raw_desc4 =
+ _mm_load_si128((void *)(rxdp + 4));
+ rte_compiler_barrier();
+ const __m128i raw_desc3 =
+ _mm_load_si128((void *)(rxdp + 3));
+ rte_compiler_barrier();
+ const __m128i raw_desc2 =
+ _mm_load_si128((void *)(rxdp + 2));
+ rte_compiler_barrier();
+ const __m128i raw_desc1 =
+ _mm_load_si128((void *)(rxdp + 1));
+ rte_compiler_barrier();
+ const __m128i raw_desc0 =
+ _mm_load_si128((void *)(rxdp + 0));
+
+ raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
+ raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
+ raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
+ raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
+ raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
+ raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
+ raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
+ raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
+
+ /**
+ * convert descriptors 4-7 into mbufs, adjusting length and
+ * re-arranging fields. Then write into the mbuf
+ */
+ const __m512i len_mask = _mm512_set_epi32(0xffffffff, 0xffffffff,
+ 0xffff3fff, 0xffffffff,
+ 0xffffffff, 0xffffffff,
+ 0xffff3fff, 0xffffffff,
+ 0xffffffff, 0xffffffff,
+ 0xffff3fff, 0xffffffff,
+ 0xffffffff, 0xffffffff,
+ 0xffff3fff, 0xffffffff);
+ const __m512i desc4_7 = _mm512_and_epi32(raw_desc4_7, len_mask);
+ __m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
+
+ /**
+ * to get packet types, shift 64-bit values down 30 bits
+ * and so ptype is in lower 8-bits in each
+ */
+ const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 16);
+ const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
+ const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
+ const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 16);
+ const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 0);
+ const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 16);
+ const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 0);
+
+ const __m512i ptype4_7 = _mm512_set_epi32
+ (0, 0, 0, type_table[ptype7],
+ 0, 0, 0, type_table[ptype6],
+ 0, 0, 0, type_table[ptype5],
+ 0, 0, 0, type_table[ptype4]);
+ mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
+
+ /**
+ * convert descriptors 0-3 into mbufs, adjusting length and
+ * re-arranging fields. Then write into the mbuf
+ */
+ const __m512i desc0_3 = _mm512_and_epi32(raw_desc0_3, len_mask);
+ __m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
+
+ /* get the packet types */
+ const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 16);
+ const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
+ const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
+ const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 16);
+ const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 0);
+ const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 16);
+ const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 0);
+
+ const __m512i ptype0_3 = _mm512_set_epi32
+ (0, 0, 0, type_table[ptype3],
+ 0, 0, 0, type_table[ptype2],
+ 0, 0, 0, type_table[ptype1],
+ 0, 0, 0, type_table[ptype0]);
+ mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
+
+ /**
+ * use permute/extract to get status and generation bit content
+ * After the operations, the packets status flags are in the
+ * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
+ */
+
+ const __m512i dd_permute_msk = _mm512_set_epi64
+ (11, 15, 3, 7, 9, 13, 1, 5);
+ const __m512i status0_7 = _mm512_permutex2var_epi64
+ (raw_desc4_7, dd_permute_msk, raw_desc0_3);
+ const __m512i gen_permute_msk = _mm512_set_epi64
+ (10, 14, 2, 6, 8, 12, 0, 4);
+ const __m512i raw_gen0_7 = _mm512_permutex2var_epi64
+ (raw_desc4_7, gen_permute_msk, raw_desc0_3);
+
+ /* now do flag manipulation */
+
+ /**
+ * At this point, we have the 8 sets of flags in the low 16-bits
+ * of each 32-bit value in vlan0.
+ * We want to extract these, and merge them with the mbuf init
+ * data so we can do a single write to the mbuf to set the flags
+ * and all the other initialization fields. Extracting the
+ * appropriate flags means that we have to do a shift and blend
+ * for each mbuf before we do the write. However, we can also
+ * add in the previously computed rx_descriptor fields to
+ * make a single 256-bit write per mbuf
+ */
+ /* check the structure matches expectations */
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
+ offsetof(struct rte_mbuf, rearm_data) + 8);
+ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
+ RTE_ALIGN(offsetof(struct rte_mbuf,
+ rearm_data),
+ 16));
+ /* build up data and do writes */
+ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
+ rearm6, rearm7;
+ const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
+ const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
+ const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
+ const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
+
+ rearm6 = _mm256_permute2f128_si256(mbuf_init, mb6_7, 0x20);
+ rearm4 = _mm256_permute2f128_si256(mbuf_init, mb4_5, 0x20);
+ rearm2 = _mm256_permute2f128_si256(mbuf_init, mb2_3, 0x20);
+ rearm0 = _mm256_permute2f128_si256(mbuf_init, mb0_1, 0x20);
+
+ /* write to mbuf */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
+ rearm6);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
+ rearm4);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
+ rearm2);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
+ rearm0);
+
+ rearm7 = _mm256_blend_epi32(mbuf_init, mb6_7, 0xF0);
+ rearm5 = _mm256_blend_epi32(mbuf_init, mb4_5, 0xF0);
+ rearm3 = _mm256_blend_epi32(mbuf_init, mb2_3, 0xF0);
+ rearm1 = _mm256_blend_epi32(mbuf_init, mb0_1, 0xF0);
+
+ /* again write to mbufs */
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
+ rearm7);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
+ rearm5);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
+ rearm3);
+ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
+ rearm1);
+
+ const __mmask8 dd_mask = _mm512_cmpeq_epi64_mask(
+ _mm512_and_epi64(status0_7, dd_check), dd_check);
+ const __mmask8 gen_mask = _mm512_cmpeq_epi64_mask(
+ _mm512_and_epi64(raw_gen0_7, gen_check),
+ _mm512_set1_epi64((uint64_t)rxq->expected_gen_id << 46));
+ const __mmask8 recv_mask = _kand_mask8(dd_mask, gen_mask);
+ uint16_t burst = __builtin_popcount(_cvtmask8_u32(recv_mask));
+
+ received += burst;
+ if (burst != IDPF_DESCS_PER_LOOP_AVX)
+ break;
+ }
+
+ /* update tail pointers */
+ rxq->rx_tail += received;
+ rxq->expected_gen_id ^= ((rxq->rx_tail & rxq->nb_rx_desc) != 0);
+ rxq->rx_tail &= (rxq->nb_rx_desc - 1);
+ if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
+ rxq->rx_tail--;
+ received--;
+ }
+
+ rxq->bufq2->rxrearm_nb += received;
+ return received;
+}
+
+/* only bufq2 can receive pkts */
+uint16_t
+idpf_splitq_recv_pkts_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ return _idpf_splitq_recv_raw_pkts_avx512(rx_queue, rx_pkts,
+ nb_pkts);
+}
+
static __rte_always_inline int
-idpf_tx_free_bufs_avx512(struct idpf_tx_queue *txq)
+idpf_tx_singleq_free_bufs_avx512(struct idpf_tx_queue *txq)
{
struct idpf_tx_vec_entry *txep;
uint32_t n;
@@ -659,7 +1113,7 @@ tx_backlog_entry_avx512(struct idpf_tx_vec_entry *txep,
#define IDPF_FLEX_TXD_QW1_BUF_SZ_S 48
static __rte_always_inline void
-idpf_vtx1(volatile struct idpf_flex_tx_desc *txdp,
+idpf_singleq_vtx1(volatile struct idpf_flex_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw =
@@ -675,7 +1129,7 @@ idpf_vtx1(volatile struct idpf_flex_tx_desc *txdp,
#define IDPF_TX_LEN_MASK 0xAA
#define IDPF_TX_OFF_MASK 0x55
static __rte_always_inline void
-idpf_vtx(volatile struct idpf_flex_tx_desc *txdp,
+idpf_singleq_vtx(volatile struct idpf_flex_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
const uint64_t hi_qw_tmpl = (IDPF_TX_DESC_DTYPE_FLEX_DATA |
@@ -683,7 +1137,7 @@ idpf_vtx(volatile struct idpf_flex_tx_desc *txdp,
/* if unaligned on 32-bit boundary, do one to align */
if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
- idpf_vtx1(txdp, *pkt, flags);
+ idpf_singleq_vtx1(txdp, *pkt, flags);
nb_pkts--, txdp++, pkt++;
}
@@ -721,14 +1175,14 @@ idpf_vtx(volatile struct idpf_flex_tx_desc *txdp,
/* do any last ones */
while (nb_pkts) {
- idpf_vtx1(txdp, *pkt, flags);
+ idpf_singleq_vtx1(txdp, *pkt, flags);
txdp++, pkt++, nb_pkts--;
}
}
static __rte_always_inline uint16_t
-idpf_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
- uint16_t nb_pkts)
+idpf_singleq_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
{
struct idpf_tx_queue *txq = tx_queue;
volatile struct idpf_flex_tx_desc *txdp;
@@ -741,7 +1195,7 @@ idpf_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
if (txq->nb_free < txq->free_thresh)
- idpf_tx_free_bufs_avx512(txq);
+ idpf_tx_singleq_free_bufs_avx512(txq);
nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
nb_commit = nb_pkts;
@@ -759,11 +1213,11 @@ idpf_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
if (nb_commit >= n) {
tx_backlog_entry_avx512(txep, tx_pkts, n);
- idpf_vtx(txdp, tx_pkts, n - 1, flags);
+ idpf_singleq_vtx(txdp, tx_pkts, n - 1, flags);
tx_pkts += (n - 1);
txdp += (n - 1);
- idpf_vtx1(txdp, *tx_pkts++, rs);
+ idpf_singleq_vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
@@ -778,7 +1232,7 @@ idpf_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
- idpf_vtx(txdp, tx_pkts, nb_commit, flags);
+ idpf_singleq_vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->next_rs) {
@@ -797,7 +1251,7 @@ idpf_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
}
static __rte_always_inline uint16_t
-idpf_xmit_pkts_vec_avx512_cmn(void *tx_queue, struct rte_mbuf **tx_pkts,
+idpf_singleq_xmit_pkts_vec_avx512_cmn(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
@@ -807,7 +1261,7 @@ idpf_xmit_pkts_vec_avx512_cmn(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
- ret = idpf_xmit_fixed_burst_vec_avx512(tx_queue, &tx_pkts[nb_tx],
+ ret = idpf_singleq_xmit_fixed_burst_vec_avx512(tx_queue, &tx_pkts[nb_tx],
num);
nb_tx += ret;
nb_pkts -= ret;
@@ -822,11 +1276,313 @@ uint16_t
idpf_singleq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
- return idpf_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts);
+ return idpf_singleq_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts);
+}
+
+static __rte_always_inline void
+idpf_splitq_scan_cq_ring(struct idpf_tx_queue *cq)
+{
+ struct idpf_splitq_tx_compl_desc *compl_ring;
+ struct idpf_tx_queue *txq;
+ uint16_t genid, txq_qid, cq_qid, i;
+ uint8_t ctype;
+
+ cq_qid = cq->tx_tail;
+
+ for (i = 0; i < IDPD_TXQ_SCAN_CQ_THRESH; i++) {
+ if (cq_qid == cq->nb_tx_desc) {
+ cq_qid = 0;
+ cq->expected_gen_id ^= 1;
+ }
+ compl_ring = &cq->compl_ring[cq_qid];
+ genid = (compl_ring->qid_comptype_gen &
+ rte_cpu_to_le_64(IDPF_TXD_COMPLQ_GEN_M)) >> IDPF_TXD_COMPLQ_GEN_S;
+ if (genid != cq->expected_gen_id)
+ break;
+ ctype = (rte_le_to_cpu_16(compl_ring->qid_comptype_gen) &
+ IDPF_TXD_COMPLQ_COMPL_TYPE_M) >> IDPF_TXD_COMPLQ_COMPL_TYPE_S;
+ txq_qid = (rte_le_to_cpu_16(compl_ring->qid_comptype_gen) &
+ IDPF_TXD_COMPLQ_QID_M) >> IDPF_TXD_COMPLQ_QID_S;
+ txq = cq->txqs[txq_qid - cq->tx_start_qid];
+ txq->ctype[ctype]++;
+ cq_qid++;
+ }
+
+ cq->tx_tail = cq_qid;
+}
+
+static __rte_always_inline int
+idpf_tx_splitq_free_bufs_avx512(struct idpf_tx_queue *txq)
+{
+ struct idpf_tx_vec_entry *txep;
+ uint32_t n;
+ uint32_t i;
+ int nb_free = 0;
+ struct rte_mbuf *m, *free[txq->rs_thresh];
+
+ n = txq->rs_thresh;
+
+ /* first buffer to free from S/W ring is at index
+ * tx_next_dd - (tx_rs_thresh-1)
+ */
+ txep = (void *)txq->sw_ring;
+ txep += txq->next_dd - (n - 1);
+
+ if (txq->offloads & IDPF_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
+ struct rte_mempool *mp = txep[0].mbuf->pool;
+ struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
+ rte_lcore_id());
+ void **cache_objs;
+
+ if (!cache || cache->len == 0)
+ goto normal;
+
+ cache_objs = &cache->objs[cache->len];
+
+ if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
+ rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
+ goto done;
+ }
+
+ /* The cache follows the following algorithm
+ * 1. Add the objects to the cache
+ * 2. Anything greater than the cache min value (if it crosses the
+ * cache flush threshold) is flushed to the ring.
+ */
+ /* Add elements back into the cache */
+ uint32_t copied = 0;
+ /* n is multiple of 32 */
+ while (copied < n) {
+ const __m512i a = _mm512_loadu_si512(&txep[copied]);
+ const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
+ const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
+ const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
+
+ _mm512_storeu_si512(&cache_objs[copied], a);
+ _mm512_storeu_si512(&cache_objs[copied + 8], b);
+ _mm512_storeu_si512(&cache_objs[copied + 16], c);
+ _mm512_storeu_si512(&cache_objs[copied + 24], d);
+ copied += 32;
+ }
+ cache->len += n;
+
+ if (cache->len >= cache->flushthresh) {
+ rte_mempool_ops_enqueue_bulk(mp,
+ &cache->objs[cache->size],
+ cache->len - cache->size);
+ cache->len = cache->size;
+ }
+ goto done;
+ }
+
+normal:
+ m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
+ if (likely(m)) {
+ free[0] = m;
+ nb_free = 1;
+ for (i = 1; i < n; i++) {
+ m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
+ if (likely(m)) {
+ if (likely(m->pool == free[0]->pool)) {
+ free[nb_free++] = m;
+ } else {
+ rte_mempool_put_bulk(free[0]->pool,
+ (void *)free,
+ nb_free);
+ free[0] = m;
+ nb_free = 1;
+ }
+ }
+ }
+ rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
+ } else {
+ for (i = 1; i < n; i++) {
+ m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
+ if (m)
+ rte_mempool_put(m->pool, m);
+ }
+ }
+
+done:
+ /* buffers were freed, update counters */
+ txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
+ txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
+ if (txq->next_dd >= txq->nb_tx_desc)
+ txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
+ txq->ctype[IDPF_TXD_COMPLT_RS] -= txq->rs_thresh;
+
+ return txq->rs_thresh;
+}
+
+#define IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S 48
+
+static __rte_always_inline void
+idpf_splitq_vtx1(volatile struct idpf_flex_tx_sched_desc *txdp,
+ struct rte_mbuf *pkt, uint64_t flags)
+{
+ uint64_t high_qw =
+ (IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE |
+ ((uint64_t)flags) |
+ ((uint64_t)pkt->data_len << IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S));
+
+ __m128i descriptor = _mm_set_epi64x(high_qw,
+ pkt->buf_iova + pkt->data_off);
+ _mm_storeu_si128((__m128i *)txdp, descriptor);
+}
+
+static __rte_always_inline void
+idpf_splitq_vtx(volatile struct idpf_flex_tx_sched_desc *txdp,
+ struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
+{
+ const uint64_t hi_qw_tmpl = (IDPF_TX_DESC_DTYPE_FLEX_FLOW_SCHE |
+ ((uint64_t)flags));
+
+ /* if unaligned on 32-bit boundary, do one to align */
+ if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
+ idpf_splitq_vtx1(txdp, *pkt, flags);
+ nb_pkts--, txdp++, pkt++;
+ }
+
+ /* do 4 at a time while possible, in bursts */
+ for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
+ uint64_t hi_qw3 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[3]->data_len <<
+ IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S);
+ uint64_t hi_qw2 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[2]->data_len <<
+ IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S);
+ uint64_t hi_qw1 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[1]->data_len <<
+ IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S);
+ uint64_t hi_qw0 =
+ hi_qw_tmpl |
+ ((uint64_t)pkt[0]->data_len <<
+ IDPF_TXD_FLEX_QW1_TX_BUF_SZ_S);
+
+ __m512i desc0_3 =
+ _mm512_set_epi64
+ (hi_qw3,
+ pkt[3]->buf_iova + pkt[3]->data_off,
+ hi_qw2,
+ pkt[2]->buf_iova + pkt[2]->data_off,
+ hi_qw1,
+ pkt[1]->buf_iova + pkt[1]->data_off,
+ hi_qw0,
+ pkt[0]->buf_iova + pkt[0]->data_off);
+ _mm512_storeu_si512((void *)txdp, desc0_3);
+ }
+
+ /* do any last ones */
+ while (nb_pkts) {
+ idpf_splitq_vtx1(txdp, *pkt, flags);
+ txdp++, pkt++, nb_pkts--;
+ }
+}
+
+static __rte_always_inline uint16_t
+idpf_splitq_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct idpf_tx_queue *txq = (struct idpf_tx_queue *)tx_queue;
+ volatile struct idpf_flex_tx_sched_desc *txdp;
+ struct idpf_tx_vec_entry *txep;
+ uint16_t n, nb_commit, tx_id;
+ /* bit2 is reserved and must be set to 1 according to Spec */
+ uint64_t cmd_dtype = IDPF_TXD_FLEX_FLOW_CMD_EOP;
+
+ tx_id = txq->tx_tail;
+
+ /* cross rx_thresh boundary is not allowed */
+ nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
+
+ nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
+ if (unlikely(nb_pkts == 0))
+ return 0;
+
+ tx_id = txq->tx_tail;
+ txdp = &txq->desc_ring[tx_id];
+ txep = (void *)txq->sw_ring;
+ txep += tx_id;
+
+ txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
+
+ n = (uint16_t)(txq->nb_tx_desc - tx_id);
+ if (nb_commit >= n) {
+ tx_backlog_entry_avx512(txep, tx_pkts, n);
+
+ idpf_splitq_vtx((void *)txdp, tx_pkts, n - 1, cmd_dtype);
+ tx_pkts += (n - 1);
+ txdp += (n - 1);
+
+ idpf_splitq_vtx1((void *)txdp, *tx_pkts++, cmd_dtype);
+
+ nb_commit = (uint16_t)(nb_commit - n);
+
+ tx_id = 0;
+ txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
+
+ /* avoid reach the end of ring */
+ txdp = &txq->desc_ring[tx_id];
+ txep = (void *)txq->sw_ring;
+ txep += tx_id;
+ }
+
+ tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
+
+ idpf_splitq_vtx((void *)txdp, tx_pkts, nb_commit, cmd_dtype);
+
+ tx_id = (uint16_t)(tx_id + nb_commit);
+ if (tx_id > txq->next_rs)
+ txq->next_rs =
+ (uint16_t)(txq->next_rs + txq->rs_thresh);
+
+ txq->tx_tail = tx_id;
+
+ IDPF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+
+ return nb_pkts;
+}
+
+static __rte_always_inline uint16_t
+idpf_splitq_xmit_pkts_vec_avx512_cmn(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ struct idpf_tx_queue *txq = (struct idpf_tx_queue *)tx_queue;
+ uint16_t nb_tx = 0;
+
+ while (nb_pkts) {
+ uint16_t ret, num;
+
+ idpf_splitq_scan_cq_ring(txq->complq);
+
+ if (txq->ctype[IDPF_TXD_COMPLT_RS] > txq->free_thresh)
+ idpf_tx_splitq_free_bufs_avx512(txq);
+
+ num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
+ ret = idpf_splitq_xmit_fixed_burst_vec_avx512(tx_queue,
+ &tx_pkts[nb_tx],
+ num);
+ nb_tx += ret;
+ nb_pkts -= ret;
+ if (ret < num)
+ break;
+ }
+
+ return nb_tx;
+}
+
+uint16_t
+idpf_splitq_xmit_pkts_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ return idpf_splitq_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts);
}
static inline void
-idpf_singleq_tx_release_mbufs_avx512(struct idpf_tx_queue *txq)
+idpf_tx_release_mbufs_avx512(struct idpf_tx_queue *txq)
{
unsigned int i;
const uint16_t max_desc = (uint16_t)(txq->nb_tx_desc - 1);
@@ -845,13 +1601,16 @@ idpf_singleq_tx_release_mbufs_avx512(struct idpf_tx_queue *txq)
}
}
-static const struct idpf_txq_ops avx512_singleq_tx_vec_ops = {
- .release_mbufs = idpf_singleq_tx_release_mbufs_avx512,
+static const struct idpf_txq_ops avx512_tx_vec_ops = {
+ .release_mbufs = idpf_tx_release_mbufs_avx512,
};
int __rte_cold
-idpf_singleq_tx_vec_setup_avx512(struct idpf_tx_queue *txq)
+idpf_tx_vec_setup_avx512(struct idpf_tx_queue *txq)
{
- txq->ops = &avx512_singleq_tx_vec_ops;
+ if (!txq)
+ return 0;
+
+ txq->ops = &avx512_tx_vec_ops;
return 0;
}
diff --git a/drivers/common/idpf/version.map b/drivers/common/idpf/version.map
index 33747a5c69..7018a1d695 100644
--- a/drivers/common/idpf/version.map
+++ b/drivers/common/idpf/version.map
@@ -44,9 +44,12 @@ INTERNAL {
idpf_singleq_xmit_pkts;
idpf_prep_pkts;
idpf_singleq_rx_vec_setup;
- idpf_singleq_tx_vec_setup_avx512;
+ idpf_splitq_rx_vec_setup;
+ idpf_tx_vec_setup_avx512;
idpf_singleq_recv_pkts_avx512;
+ idpf_splitq_recv_pkts_avx512;
idpf_singleq_xmit_pkts_avx512;
+ idpf_splitq_xmit_pkts_avx512;
local: *;
};
diff --git a/drivers/net/idpf/idpf_rxtx.c b/drivers/net/idpf/idpf_rxtx.c
index 1b07175cde..646b3a6798 100644
--- a/drivers/net/idpf/idpf_rxtx.c
+++ b/drivers/net/idpf/idpf_rxtx.c
@@ -758,7 +758,8 @@ idpf_set_rx_function(struct rte_eth_dev *dev)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
#ifdef CC_AVX512_SUPPORT
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
- rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
+ rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
+ rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512DQ))
vport->rx_use_avx512 = true;
#else
PMD_DRV_LOG(NOTICE,
@@ -771,10 +772,24 @@ idpf_set_rx_function(struct rte_eth_dev *dev)
#ifdef RTE_ARCH_X86
if (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) {
+#ifdef RTE_ARCH_X86
+ if (vport->rx_vec_allowed) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ (void)idpf_splitq_rx_vec_setup(rxq);
+ }
+#ifdef CC_AVX512_SUPPORT
+ if (vport->rx_use_avx512) {
+ dev->rx_pkt_burst = idpf_splitq_recv_pkts_avx512;
+ return;
+ }
+#endif
+ }
+#endif
dev->rx_pkt_burst = idpf_splitq_recv_pkts;
} else {
if (vport->rx_vec_allowed) {
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
(void)idpf_singleq_rx_vec_setup(rxq);
}
@@ -806,14 +821,22 @@ idpf_set_tx_function(struct rte_eth_dev *dev)
int i;
#endif /* CC_AVX512_SUPPORT */
- if (idpf_rx_vec_dev_check_default(dev) == IDPF_VECTOR_PATH &&
+ if (idpf_tx_vec_dev_check_default(dev) == IDPF_VECTOR_PATH &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
vport->tx_vec_allowed = true;
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
#ifdef CC_AVX512_SUPPORT
+ {
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
vport->tx_use_avx512 = true;
+ if (vport->tx_use_avx512) {
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ idpf_tx_vec_setup_avx512(txq);
+ }
+ }
+ }
#else
PMD_DRV_LOG(NOTICE,
"AVX512 is not supported in build env");
@@ -824,6 +847,17 @@ idpf_set_tx_function(struct rte_eth_dev *dev)
#endif /* RTE_ARCH_X86 */
if (vport->txq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) {
+#ifdef RTE_ARCH_X86
+ if (vport->tx_vec_allowed) {
+#ifdef CC_AVX512_SUPPORT
+ if (vport->tx_use_avx512) {
+ dev->tx_pkt_burst = idpf_splitq_xmit_pkts_avx512;
+ dev->tx_pkt_prepare = idpf_prep_pkts;
+ return;
+ }
+#endif
+ }
+#endif
dev->tx_pkt_burst = idpf_splitq_xmit_pkts;
dev->tx_pkt_prepare = idpf_prep_pkts;
} else {
@@ -831,12 +865,6 @@ idpf_set_tx_function(struct rte_eth_dev *dev)
if (vport->tx_vec_allowed) {
#ifdef CC_AVX512_SUPPORT
if (vport->tx_use_avx512) {
- for (i = 0; i < dev->data->nb_tx_queues; i++) {
- txq = dev->data->tx_queues[i];
- if (txq == NULL)
- continue;
- idpf_singleq_tx_vec_setup_avx512(txq);
- }
dev->tx_pkt_burst = idpf_singleq_xmit_pkts_avx512;
dev->tx_pkt_prepare = idpf_prep_pkts;
return;
diff --git a/drivers/net/idpf/idpf_rxtx_vec_common.h b/drivers/net/idpf/idpf_rxtx_vec_common.h
index 0f4e10e154..366870d1db 100644
--- a/drivers/net/idpf/idpf_rxtx_vec_common.h
+++ b/drivers/net/idpf/idpf_rxtx_vec_common.h
@@ -1,4 +1,4 @@
-/* SPDX-License-Identifier: BSD-3-Clause
+/* SPDX-LIDPFnse-Identifier: BSD-3-Clause
* Copyright(c) 2022 Intel Corporation
*/
@@ -15,14 +15,15 @@
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
-#define IDPF_VECTOR_PATH 0
-#define ICE_RX_NO_VECTOR_FLAGS ( \
+#define IDPF_SCALAR_PATH 0
+#define IDPF_VECTOR_PATH 1
+#define IDPF_RX_NO_VECTOR_FLAGS ( \
RTE_ETH_RX_OFFLOAD_IPV4_CKSUM | \
RTE_ETH_RX_OFFLOAD_UDP_CKSUM | \
RTE_ETH_RX_OFFLOAD_TCP_CKSUM | \
RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM | \
RTE_ETH_RX_OFFLOAD_TIMESTAMP)
-#define ICE_TX_NO_VECTOR_FLAGS ( \
+#define IDPF_TX_NO_VECTOR_FLAGS ( \
RTE_ETH_TX_OFFLOAD_TCP_TSO | \
RTE_ETH_TX_OFFLOAD_MULTI_SEGS)
@@ -30,19 +31,19 @@ static inline int
idpf_rx_vec_queue_default(struct idpf_rx_queue *rxq)
{
if (rxq == NULL)
- return -1;
+ return IDPF_SCALAR_PATH;
if (rte_is_power_of_2(rxq->nb_rx_desc) == 0)
- return -1;
+ return IDPF_SCALAR_PATH;
if (rxq->rx_free_thresh < IDPF_VPMD_RX_MAX_BURST)
- return -1;
+ return IDPF_SCALAR_PATH;
if ((rxq->nb_rx_desc % rxq->rx_free_thresh) != 0)
- return -1;
+ return IDPF_SCALAR_PATH;
- if ((rxq->offloads & ICE_RX_NO_VECTOR_FLAGS) != 0)
- return -1;
+ if ((rxq->offloads & IDPF_RX_NO_VECTOR_FLAGS) != 0)
+ return IDPF_SCALAR_PATH;
return IDPF_VECTOR_PATH;
}
@@ -51,14 +52,23 @@ static inline int
idpf_tx_vec_queue_default(struct idpf_tx_queue *txq)
{
if (txq == NULL)
- return -1;
+ return IDPF_SCALAR_PATH;
if (txq->rs_thresh < IDPF_VPMD_TX_MAX_BURST ||
(txq->rs_thresh & 3) != 0)
- return -1;
+ return IDPF_SCALAR_PATH;
- if ((txq->offloads & ICE_TX_NO_VECTOR_FLAGS) != 0)
- return -1;
+ if ((txq->offloads & IDPF_TX_NO_VECTOR_FLAGS) != 0)
+ return IDPF_SCALAR_PATH;
+
+ return IDPF_VECTOR_PATH;
+}
+
+static inline int
+idpf_rx_splitq_vec_default(struct idpf_rx_queue *rxq)
+{
+ if (rxq->bufq2->rx_buf_len < rxq->max_pkt_len)
+ return IDPF_SCALAR_PATH;
return IDPF_VECTOR_PATH;
}
@@ -66,15 +76,18 @@ idpf_tx_vec_queue_default(struct idpf_tx_queue *txq)
static inline int
idpf_rx_vec_dev_check_default(struct rte_eth_dev *dev)
{
- int i;
+ struct idpf_vport *vport = dev->data->dev_private;
struct idpf_rx_queue *rxq;
- int ret = 0;
+ int i, default_ret, splitq_ret, ret = IDPF_SCALAR_PATH;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
- ret = (idpf_rx_vec_queue_default(rxq));
- if (ret < 0)
- return -1;
+ splitq_ret = idpf_rx_splitq_vec_default(rxq);
+ default_ret = idpf_rx_vec_queue_default(rxq);
+ ret = (vport->rxq_model == VIRTCHNL2_QUEUE_MODEL_SPLIT) ?
+ splitq_ret && default_ret : default_ret;
+ if (ret == IDPF_SCALAR_PATH)
+ return IDPF_SCALAR_PATH;
}
return IDPF_VECTOR_PATH;
@@ -90,8 +103,8 @@ idpf_tx_vec_dev_check_default(struct rte_eth_dev *dev)
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
ret = idpf_tx_vec_queue_default(txq);
- if (ret < 0)
- return -1;
+ if (ret == IDPF_SCALAR_PATH)
+ return IDPF_SCALAR_PATH;
}
return IDPF_VECTOR_PATH;
--
2.34.1
next prev parent reply other threads:[~2023-01-13 1:44 UTC|newest]
Thread overview: 25+ messages / expand[flat|nested] mbox.gz Atom feed top
2022-12-14 6:07 [PATCH v1] " Wenjun Wu
2022-12-14 7:04 ` [PATCH v2 0/1] Add support AVX512 split queue datapath Wenjun Wu
2022-12-14 7:04 ` [PATCH v2 1/1] common/idpf: add AVX512 data path for split queue model Wenjun Wu
2023-01-06 6:46 ` [PATCH v3 0/1] Add support AVX512 split queue datapath Wenjun Wu
2023-01-06 6:46 ` [PATCH v3 1/1] common/idpf: add AVX512 data path for split queue model Wenjun Wu
2023-01-11 7:13 ` Liu, Mingxia
2023-01-12 2:40 ` [PATCH v4 0/1] Add support AVX512 split queue datapath Wenjun Wu
2023-01-12 2:40 ` [PATCH v4 1/1] common/idpf: add AVX512 data path for split queue model Wenjun Wu
2023-01-12 7:27 ` Lu, Wenzhuo
2023-01-13 1:51 ` [PATCH v5 0/1] Add support AVX512 split queue datapath Wenjun Wu
2023-01-13 1:51 ` Wenjun Wu [this message]
2023-01-14 3:54 ` [PATCH v6 " Wenjun Wu
2023-01-14 3:54 ` [PATCH v6 1/1] common/idpf: add AVX512 data path for split queue model Wenjun Wu
2023-01-18 3:51 ` [PATCH v7 0/1] Add support AVX512 split queue datapath Wenjun Wu
2023-01-18 3:51 ` [PATCH v7 1/1] common/idpf: add AVX512 data path for split queue model Wenjun Wu
2023-02-06 3:34 ` [PATCH v8 0/1] Add support AVX512 split queue datapath Wenjun Wu
2023-02-06 3:34 ` [PATCH v8 1/1] common/idpf: add AVX512 data path for split queue model Wenjun Wu
2023-02-06 3:41 ` [PATCH v9 0/1] Add support AVX512 split queue datapath Wenjun Wu
2023-02-06 3:41 ` [PATCH v9 1/1] common/idpf: add AVX512 data path for split queue model Wenjun Wu
2023-02-07 2:11 ` [PATCH v10 0/1] Add support AVX512 split queue datapath Wenjun Wu
2023-02-07 2:11 ` [PATCH v10 1/1] common/idpf: add AVX512 data path for split queue model Wenjun Wu
2023-02-07 3:10 ` Zhang, Qi Z
2023-02-07 8:45 ` [PATCH v11 0/1] Add support AVX512 split queue datapath Wenjun Wu
2023-02-07 8:45 ` [PATCH v11 1/1] common/idpf: add AVX512 data path for split queue model Wenjun Wu
2023-02-08 1:35 ` [PATCH v11 0/1] Add support AVX512 split queue datapath Zhang, Qi Z
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=20230113015119.3279019-2-wenjun1.wu@intel.com \
--to=wenjun1.wu@intel.com \
--cc=beilei.xing@intel.com \
--cc=dev@dpdk.org \
--cc=jingjing.wu@intel.com \
--cc=mingxia.liu@intel.com \
--cc=wenjing.qiao@intel.com \
--cc=wenzhuo.lu@intel.com \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).