DPDK patches and discussions
 help / color / mirror / Atom feed
From: "Mattias Rönnblom" <mattias.ronnblom@ericsson.com>
To: <dev@dpdk.org>
Cc: "Erik Gabriel Carrillo" <erik.g.carrillo@intel.com>,
	"David Marchand" <david.marchand@redhat.com>,
	maria.lingemark@ericsson.com,
	"Stefan Sundkvist" <stefan.sundkvist@ericsson.com>,
	"Mattias Rönnblom" <mattias.ronnblom@ericsson.com>
Subject: [RFC 2/2] eal: add high-performance timer facility
Date: Tue, 28 Feb 2023 10:39:16 +0100	[thread overview]
Message-ID: <20230228093916.87206-3-mattias.ronnblom@ericsson.com> (raw)
In-Reply-To: <20230228093916.87206-1-mattias.ronnblom@ericsson.com>

The htimer library attempts at providing a timer facility with roughly
the same functionality, but less overhead and better scalability than
DPDK timer library.

The htimer library employs per-lcore hierachical timer wheels and a
message-based synchronization/MT-safety scheme.

Signed-off-by: Mattias Rönnblom <mattias.ronnblom@ericsson.com>
---
 app/test/meson.build             |   8 +-
 app/test/test_htimer_mgr.c       | 674 +++++++++++++++++++++++++++++++
 app/test/test_htimer_mgr_perf.c  | 324 +++++++++++++++
 app/test/test_htw.c              | 478 ++++++++++++++++++++++
 app/test/test_htw_perf.c         | 181 +++++++++
 doc/api/doxy-api-index.md        |   5 +-
 doc/api/doxy-api.conf.in         |   1 +
 lib/htimer/meson.build           |   7 +
 lib/htimer/rte_htimer.h          |  65 +++
 lib/htimer/rte_htimer_mgr.c      | 488 ++++++++++++++++++++++
 lib/htimer/rte_htimer_mgr.h      | 497 +++++++++++++++++++++++
 lib/htimer/rte_htimer_msg.h      |  44 ++
 lib/htimer/rte_htimer_msg_ring.c |  18 +
 lib/htimer/rte_htimer_msg_ring.h |  49 +++
 lib/htimer/rte_htw.c             | 437 ++++++++++++++++++++
 lib/htimer/rte_htw.h             |  49 +++
 lib/htimer/version.map           |  17 +
 lib/meson.build                  |   1 +
 18 files changed, 3341 insertions(+), 2 deletions(-)
 create mode 100644 app/test/test_htimer_mgr.c
 create mode 100644 app/test/test_htimer_mgr_perf.c
 create mode 100644 app/test/test_htw.c
 create mode 100644 app/test/test_htw_perf.c
 create mode 100644 lib/htimer/meson.build
 create mode 100644 lib/htimer/rte_htimer.h
 create mode 100644 lib/htimer/rte_htimer_mgr.c
 create mode 100644 lib/htimer/rte_htimer_mgr.h
 create mode 100644 lib/htimer/rte_htimer_msg.h
 create mode 100644 lib/htimer/rte_htimer_msg_ring.c
 create mode 100644 lib/htimer/rte_htimer_msg_ring.h
 create mode 100644 lib/htimer/rte_htw.c
 create mode 100644 lib/htimer/rte_htw.h
 create mode 100644 lib/htimer/version.map

diff --git a/app/test/meson.build b/app/test/meson.build
index 03811ff692..5a48775a60 100644
--- a/app/test/meson.build
+++ b/app/test/meson.build
@@ -143,6 +143,10 @@ test_sources = files(
         'test_timer_perf.c',
         'test_timer_racecond.c',
         'test_timer_secondary.c',
+        'test_htw.c',
+        'test_htw_perf.c',
+        'test_htimer_mgr_perf.c',
+        'test_htimer_mgr.c',
         'test_ticketlock.c',
         'test_trace.c',
         'test_trace_register.c',
@@ -165,7 +169,6 @@ fast_tests = [
         ['bpf_autotest', true, true],
         ['bpf_convert_autotest', true, true],
         ['bitops_autotest', true, true],
-        ['bitset_autotest', true, true],
         ['byteorder_autotest', true, true],
         ['cksum_autotest', true, true],
         ['cmdline_autotest', true, true],
@@ -193,6 +196,7 @@ fast_tests = [
         ['fib6_autotest', true, true],
         ['func_reentrancy_autotest', false, true],
         ['hash_autotest', true, true],
+        ['htimer_mgr_autotest', true, true],
         ['interrupt_autotest', true, true],
         ['ipfrag_autotest', false, true],
         ['lcores_autotest', true, true],
@@ -265,6 +269,8 @@ perf_test_names = [
         'memcpy_perf_autotest',
         'hash_perf_autotest',
         'timer_perf_autotest',
+        'htimer_mgr_perf_autotest',
+        'htw_perf_autotest',
         'reciprocal_division',
         'reciprocal_division_perf',
         'lpm_perf_autotest',
diff --git a/app/test/test_htimer_mgr.c b/app/test/test_htimer_mgr.c
new file mode 100644
index 0000000000..4d82a5e8b0
--- /dev/null
+++ b/app/test/test_htimer_mgr.c
@@ -0,0 +1,674 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#include "test.h"
+
+#include <sys/queue.h>
+#include <stdlib.h>
+#include <inttypes.h>
+
+#include <rte_common.h>
+#include <rte_cycles.h>
+#include <rte_htimer_mgr.h>
+#include <rte_launch.h>
+#include <rte_lcore.h>
+#include <rte_random.h>
+
+static int
+timer_lcore(void *arg)
+{
+	bool *stop = arg;
+
+	while (!__atomic_load_n(stop, __ATOMIC_RELAXED))
+		rte_htimer_mgr_manage();
+
+	return 0;
+}
+
+static void
+count_timer_cb(struct rte_htimer *timer __rte_unused, void *arg)
+{
+	unsigned int *count = arg;
+
+	__atomic_fetch_add(count, 1, __ATOMIC_RELAXED);
+}
+
+static void
+count_async_cb(struct rte_htimer *timer __rte_unused, int result,
+	       void *cb_arg)
+{
+	unsigned int *count = cb_arg;
+
+	if (result == RTE_HTIMER_MGR_ASYNC_RESULT_ADDED)
+		__atomic_fetch_add(count, 1, __ATOMIC_RELAXED);
+}
+
+static uint64_t s_to_tsc(double s)
+{
+	return s * rte_get_tsc_hz();
+}
+
+#define ASYNC_ADD_TEST_EXPIRATION_TIME 0.25 /* s */
+#define ASYNC_TEST_TICK s_to_tsc(1e-6)
+
+static int
+test_htimer_mgr_async_add(unsigned int num_timers_per_lcore)
+{
+	struct rte_htimer *timers;
+	unsigned int timer_idx;
+	unsigned int lcore_id;
+	bool stop = false;
+	unsigned int timeout_count = 0;
+	unsigned int async_count = 0;
+	unsigned int num_workers = 0;
+	uint64_t expiration_time;
+	unsigned int num_total_timers;
+
+	rte_htimer_mgr_init(ASYNC_TEST_TICK);
+
+	RTE_LCORE_FOREACH_WORKER(lcore_id) {
+		if (rte_eal_remote_launch(timer_lcore, &stop, lcore_id) != 0)
+			rte_panic("Unable to launch timer lcore\n");
+		num_workers++;
+	}
+
+	num_total_timers = num_workers * num_timers_per_lcore;
+
+	timers = malloc(num_total_timers * sizeof(struct rte_htimer));
+	timer_idx = 0;
+
+	if (timers == NULL)
+		rte_panic("Unable to allocate heap memory\n");
+
+	expiration_time = rte_get_tsc_hz() * ASYNC_ADD_TEST_EXPIRATION_TIME;
+
+	RTE_LCORE_FOREACH_WORKER(lcore_id) {
+		unsigned int i;
+
+		for (i = 0; i < num_timers_per_lcore; i++) {
+			struct rte_htimer *timer = &timers[timer_idx++];
+
+			for (;;) {
+				int rc;
+
+				rc = rte_htimer_mgr_async_add(timer, lcore_id,
+							      expiration_time,
+							      0,
+							      count_timer_cb,
+							      &timeout_count, 0,
+							      count_async_cb,
+							      &async_count);
+				if (unlikely(rc == -EBUSY))
+					rte_htimer_mgr_process();
+				else
+					break;
+			}
+		}
+	}
+
+	while (__atomic_load_n(&async_count, __ATOMIC_RELAXED) !=
+	       num_total_timers ||
+	       __atomic_load_n(&timeout_count, __ATOMIC_RELAXED) !=
+	       num_total_timers)
+		rte_htimer_mgr_manage();
+
+	__atomic_store_n(&stop, true, __ATOMIC_RELAXED);
+
+	rte_eal_mp_wait_lcore();
+
+	rte_htimer_mgr_deinit();
+
+	free(timers);
+
+	return TEST_SUCCESS;
+}
+
+struct async_recorder_state {
+	bool timer_cb_run;
+	bool async_add_cb_run;
+	bool async_cancel_cb_run;
+	bool failed;
+};
+
+static void
+record_async_add_cb(struct rte_htimer *timer __rte_unused,
+		    int result, void *cb_arg)
+{
+	struct async_recorder_state *state = cb_arg;
+
+	if (state->failed)
+		return;
+
+	if (state->async_add_cb_run ||
+	    result != RTE_HTIMER_MGR_ASYNC_RESULT_ADDED) {
+		puts("async add run already");
+		state->failed = true;
+	}
+
+	state->async_add_cb_run = true;
+}
+
+static void
+record_async_cancel_cb(struct rte_htimer *timer __rte_unused,
+		       int result, void *cb_arg)
+{
+	struct async_recorder_state *state = cb_arg;
+
+	if (state->failed)
+		return;
+
+	if (state->async_cancel_cb_run) {
+		state->failed = true;
+		return;
+	}
+
+	switch (result) {
+	case RTE_HTIMER_MGR_ASYNC_RESULT_EXPIRED:
+		if (!state->timer_cb_run)
+			state->failed = true;
+		break;
+	case RTE_HTIMER_MGR_ASYNC_RESULT_CANCELED:
+		if (state->timer_cb_run)
+			state->failed = true;
+		break;
+	case RTE_HTIMER_MGR_ASYNC_RESULT_ALREADY_CANCELED:
+		state->failed = true;
+	}
+
+	state->async_cancel_cb_run = true;
+}
+
+static int
+record_check_consistency(struct async_recorder_state *state)
+{
+	if (state->failed)
+		return -1;
+
+	return state->async_cancel_cb_run ? 1 : 0;
+}
+
+static int
+records_check_consistency(struct async_recorder_state *states,
+			  unsigned int num_states)
+{
+	unsigned int i;
+	int canceled = 0;
+
+	for (i = 0; i < num_states; i++) {
+		int rc;
+
+		rc = record_check_consistency(&states[i]);
+
+		if (rc < 0)
+			return -1;
+		canceled += rc;
+	}
+
+	return canceled;
+}
+
+static void
+log_timer_expiry_cb(struct rte_htimer *timer __rte_unused,
+		    void *arg)
+{
+	bool *timer_run = arg;
+
+	*timer_run = true;
+}
+
+
+#define ASYNC_ADD_CANCEL_TEST_EXPIRATION_TIME_MAX 10e-3 /* s */
+
+static int
+test_htimer_mgr_async_add_cancel(unsigned int num_timers_per_lcore)
+{
+	struct rte_htimer *timers;
+	struct async_recorder_state *recorder_states;
+	unsigned int timer_idx = 0;
+	unsigned int lcore_id;
+	uint64_t now;
+	unsigned int num_workers = 0;
+	bool stop = false;
+	uint64_t max_expiration_time =
+		s_to_tsc(ASYNC_ADD_CANCEL_TEST_EXPIRATION_TIME_MAX);
+	unsigned int num_total_timers;
+	int canceled = 0;
+
+	rte_htimer_mgr_init(ASYNC_TEST_TICK);
+
+	RTE_LCORE_FOREACH_WORKER(lcore_id) {
+		if (rte_eal_remote_launch(timer_lcore, &stop, lcore_id) != 0)
+			rte_panic("Unable to launch timer lcore\n");
+		num_workers++;
+	}
+
+	num_total_timers = num_workers * num_timers_per_lcore;
+
+	timers = malloc(num_total_timers * sizeof(struct rte_htimer));
+	recorder_states =
+		malloc(num_total_timers * sizeof(struct async_recorder_state));
+
+	if (timers == NULL || recorder_states == NULL)
+		rte_panic("Unable to allocate heap memory\n");
+
+	now = rte_get_tsc_cycles();
+
+	RTE_LCORE_FOREACH_WORKER(lcore_id) {
+		unsigned int i;
+
+		for (i = 0; i < num_timers_per_lcore; i++) {
+			struct rte_htimer *timer = &timers[timer_idx];
+			struct async_recorder_state *state =
+				&recorder_states[timer_idx];
+
+			timer_idx++;
+
+			*state = (struct async_recorder_state) {};
+
+			uint64_t expiration_time =
+				now + rte_rand_max(max_expiration_time);
+
+			for (;;) {
+				int rc;
+
+				rc = rte_htimer_mgr_async_add(timer, lcore_id,
+							 expiration_time,
+							 0,
+							 log_timer_expiry_cb,
+							 &state->timer_cb_run,
+							 0,
+							 record_async_add_cb,
+							 state);
+
+				if (unlikely(rc == -EBUSY))
+					rte_htimer_mgr_process();
+				else
+					break;
+			}
+		}
+	}
+
+	timer_idx = 0;
+
+	RTE_LCORE_FOREACH_WORKER(lcore_id) {
+		unsigned int i;
+
+		for (i = 0; i < num_timers_per_lcore; i++) {
+			struct rte_htimer *timer = &timers[timer_idx];
+			struct async_recorder_state *state =
+				&recorder_states[timer_idx];
+
+			timer_idx++;
+
+			/* cancel roughly half of the timers */
+			if (rte_rand_max(2) == 0)
+				continue;
+
+			for (;;) {
+				int rc;
+
+				rc = rte_htimer_mgr_async_cancel(timer,
+							record_async_cancel_cb,
+							state);
+
+				if (unlikely(rc == -EBUSY)) {
+					puts("busy");
+					rte_htimer_mgr_process();
+				} else
+					break;
+			}
+
+			canceled++;
+		}
+	}
+
+	for (;;) {
+		int cancel_completed;
+
+		cancel_completed = records_check_consistency(recorder_states,
+							     num_total_timers);
+
+		if (cancel_completed < 0) {
+			puts("Inconstinency found");
+			return TEST_FAILED;
+		}
+
+		if (cancel_completed == canceled)
+			break;
+
+		rte_htimer_mgr_process();
+	}
+
+	__atomic_store_n(&stop, true, __ATOMIC_RELAXED);
+
+	rte_eal_mp_wait_lcore();
+
+	rte_htimer_mgr_deinit();
+
+	free(timers);
+	free(recorder_states);
+
+	return TEST_SUCCESS;
+}
+
+/*
+ * This is a test case where one thread asynchronously adds two timers,
+ * with the same expiration time; one on the local lcore and one on a
+ * remote lcore. This creates a tricky situation for the timer
+ * manager, and for the application as well, if the htimer struct is
+ * dynamically allocated.
+ */
+
+struct test_timer {
+	uint32_t ref_cnt;
+	uint64_t expiration_time; /* in TSC, not tick */
+	uint32_t *timeout_count;
+	bool *failure_occured;
+	struct rte_htimer htimer;
+};
+
+
+static struct test_timer *
+test_timer_create(uint64_t expiration_time, uint32_t *timeout_count,
+		  bool *failure_occured)
+{
+	struct test_timer *timer;
+
+	timer = malloc(sizeof(struct test_timer));
+
+	if (timer == NULL)
+		rte_panic("Unable to allocate timer memory\n");
+
+	timer->ref_cnt = 1;
+	timer->expiration_time = expiration_time;
+	timer->timeout_count = timeout_count;
+	timer->failure_occured = failure_occured;
+
+	return timer;
+}
+
+static void
+test_timer_inc_ref_cnt(struct test_timer *timer)
+{
+	__atomic_add_fetch(&timer->ref_cnt, 1, __ATOMIC_RELEASE);
+}
+
+static void
+test_timer_dec_ref_cnt(struct test_timer *timer)
+{
+	if (timer != NULL) {
+		uint32_t cnt = __atomic_sub_fetch(&timer->ref_cnt, 1,
+						  __ATOMIC_RELEASE);
+		if (cnt == 0)
+			free(timer);
+	}
+}
+
+static void
+test_timer_cb(struct rte_htimer *timer, void *arg __rte_unused)
+{
+	struct test_timer *test_timer =
+		container_of(timer, struct test_timer, htimer);
+	uint64_t now = rte_get_tsc_cycles();
+
+	if (now < test_timer->expiration_time)
+		*(test_timer->failure_occured) = true;
+
+	__atomic_fetch_add(test_timer->timeout_count, 1, __ATOMIC_RELAXED);
+
+	test_timer_dec_ref_cnt(test_timer);
+}
+
+static int
+worker_lcore(void *arg)
+{
+	bool *stop = arg;
+
+	while (!__atomic_load_n(stop, __ATOMIC_RELAXED))
+		rte_htimer_mgr_manage();
+
+	return 0;
+}
+
+struct cancel_timer {
+	bool cancel;
+	struct rte_htimer *target_timer;
+	uint32_t *cancel_count;
+	uint32_t *expired_count;
+	bool *failure_occured;
+	struct rte_htimer htimer;
+};
+
+static struct cancel_timer *
+cancel_timer_create(bool cancel, struct rte_htimer *target_timer,
+		    uint32_t *cancel_count, uint32_t *expired_count,
+		    bool *failure_occured)
+{
+	struct cancel_timer *timer;
+
+	timer = malloc(sizeof(struct cancel_timer));
+
+	if (timer == NULL)
+		rte_panic("Unable to allocate timer memory\n");
+
+	timer->cancel = cancel;
+	timer->target_timer = target_timer;
+	timer->cancel_count = cancel_count;
+	timer->expired_count = expired_count;
+	timer->failure_occured = failure_occured;
+
+	return timer;
+}
+
+static void
+async_cancel_cb(struct rte_htimer *timer, int result, void *cb_arg)
+{
+	struct test_timer *test_timer =
+		container_of(timer, struct test_timer, htimer);
+	struct cancel_timer *cancel_timer = cb_arg;
+	bool *failure_occured = cancel_timer->failure_occured;
+
+	if (!cancel_timer->cancel || cancel_timer->target_timer != timer)
+		*failure_occured = true;
+
+	if (result == RTE_HTIMER_MGR_ASYNC_RESULT_CANCELED) {
+		uint32_t *cancel_count = cancel_timer->cancel_count;
+
+		/* decrease target lcore's ref count */
+		test_timer_dec_ref_cnt(test_timer);
+		(*cancel_count)++;
+	} else if (result == RTE_HTIMER_MGR_ASYNC_RESULT_EXPIRED) {
+		uint32_t *expired_count = cancel_timer->expired_count;
+
+		(*expired_count)++;
+	} else
+		*failure_occured = true;
+
+	/* source lcore's ref count */
+	test_timer_dec_ref_cnt(test_timer);
+
+	free(cancel_timer);
+}
+
+static void
+cancel_timer_cb(struct rte_htimer *timer, void *arg __rte_unused)
+{
+	struct cancel_timer *cancel_timer =
+		container_of(timer, struct cancel_timer, htimer);
+
+	if (cancel_timer->cancel) {
+		int rc;
+
+		rc = rte_htimer_mgr_async_cancel(cancel_timer->target_timer,
+						 async_cancel_cb, cancel_timer);
+
+		if (rc == -EBUSY)
+			rte_htimer_mgr_add(timer, 0, 0, cancel_timer_cb,
+					   NULL, 0);
+	} else
+		free(cancel_timer);
+}
+
+#define REF_CNT_TEST_TICK s_to_tsc(10e-9)
+#define REF_CNT_AVG_EXPIRATION_TIME (50e-6)
+#define REF_CNT_MAX_EXPIRATION_TIME (2 * REF_CNT_AVG_EXPIRATION_TIME)
+#define REF_CNT_CANCEL_FUZZ(expiration_time) \
+	((uint64_t)((expiration_time) * (rte_drand()/10 + 0.95)))
+
+static int
+test_htimer_mgr_ref_cnt_timers(unsigned int num_timers_per_lcore)
+{
+	unsigned int lcore_id;
+	bool stop = false;
+	unsigned int num_workers = 0;
+	struct test_timer **timers;
+	struct cancel_timer **cancel_timers;
+	unsigned int num_timers;
+	uint32_t timeout_count = 0;
+	uint32_t cancel_count = 0;
+	uint32_t expired_count = 0;
+	bool failure_occured = false;
+	unsigned int timer_idx;
+	unsigned int expected_cancel_attempts;
+	uint64_t deadline;
+	uint64_t now;
+
+	rte_htimer_mgr_init(REF_CNT_TEST_TICK);
+
+	RTE_LCORE_FOREACH_WORKER(lcore_id) {
+		if (rte_eal_remote_launch(worker_lcore, &stop, lcore_id) != 0)
+			rte_panic("Unable to launch timer lcore\n");
+		num_workers++;
+	}
+
+	/* give the workers a chance to get going */
+	rte_delay_us_block(10*1000);
+
+	num_timers = num_timers_per_lcore * num_workers;
+
+	timers = malloc(sizeof(struct test_timer *) * num_timers);
+	cancel_timers = malloc(sizeof(struct cancel_timer *) * num_timers);
+
+	if (timers == NULL || cancel_timers == NULL)
+		rte_panic("Unable to allocate memory\n");
+
+	timer_idx = 0;
+	expected_cancel_attempts = 0;
+
+	RTE_LCORE_FOREACH_WORKER(lcore_id) {
+		unsigned int i;
+
+		for (i = 0; i < num_timers_per_lcore; i++) {
+			uint64_t expiration_time;
+			struct test_timer *timer;
+			struct rte_htimer *htimer;
+			bool cancel;
+			struct cancel_timer *cancel_timer;
+			uint64_t cancel_expiration_time;
+
+			expiration_time =
+				s_to_tsc(REF_CNT_MAX_EXPIRATION_TIME *
+					 rte_drand());
+
+			timer = test_timer_create(expiration_time,
+						  &timeout_count,
+						  &failure_occured);
+			htimer = &timer->htimer;
+
+			timers[timer_idx++] = timer;
+
+			/* for the target lcore's usage of this time */
+			test_timer_inc_ref_cnt(timer);
+
+			for (;;) {
+				int rc;
+
+				rc = rte_htimer_mgr_async_add(htimer, lcore_id,
+							      expiration_time,
+							      0, test_timer_cb,
+							      NULL, 0, NULL,
+							      NULL);
+				if (unlikely(rc == -EBUSY))
+					rte_htimer_mgr_process();
+				else
+					break;
+			}
+
+			cancel = rte_rand_max(2);
+
+			cancel_timer =
+				cancel_timer_create(cancel, &timer->htimer,
+						    &cancel_count,
+						    &expired_count,
+						    &failure_occured);
+
+			cancel_expiration_time =
+				REF_CNT_CANCEL_FUZZ(expiration_time);
+
+			rte_htimer_mgr_add(&cancel_timer->htimer,
+					   cancel_expiration_time, 0,
+					   cancel_timer_cb, NULL, 0);
+
+			if (cancel)
+				expected_cancel_attempts++;
+		}
+	}
+
+	deadline = rte_get_tsc_cycles() + REF_CNT_MAX_EXPIRATION_TIME +
+		s_to_tsc(0.25);
+
+	do {
+		now = rte_get_tsc_cycles();
+
+		rte_htimer_mgr_manage_time(now);
+
+	} while (now < deadline);
+
+	__atomic_store_n(&stop, true, __ATOMIC_RELAXED);
+
+	rte_eal_mp_wait_lcore();
+
+	if (failure_occured)
+		return TEST_FAILED;
+
+	if ((cancel_count + expired_count) != expected_cancel_attempts)
+		return TEST_FAILED;
+
+	if (timeout_count != (num_timers - cancel_count))
+		return TEST_FAILED;
+
+	rte_htimer_mgr_deinit();
+
+	return TEST_SUCCESS;
+}
+
+static int
+test_htimer_mgr(void)
+{
+	int rc;
+
+	rc = test_htimer_mgr_async_add(1);
+	if (rc != TEST_SUCCESS)
+		return rc;
+
+	rc = test_htimer_mgr_async_add(100000);
+	if (rc != TEST_SUCCESS)
+		return rc;
+
+	rc = test_htimer_mgr_async_add_cancel(100);
+	if (rc != TEST_SUCCESS)
+		return rc;
+
+	rc = test_htimer_mgr_ref_cnt_timers(10);
+	if (rc != TEST_SUCCESS)
+		return rc;
+
+	rc = test_htimer_mgr_ref_cnt_timers(10000);
+	if (rc != TEST_SUCCESS)
+		return rc;
+
+	return TEST_SUCCESS;
+}
+
+REGISTER_TEST_COMMAND(htimer_mgr_autotest, test_htimer_mgr);
diff --git a/app/test/test_htimer_mgr_perf.c b/app/test/test_htimer_mgr_perf.c
new file mode 100644
index 0000000000..179b0ba6e1
--- /dev/null
+++ b/app/test/test_htimer_mgr_perf.c
@@ -0,0 +1,324 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#include "test.h"
+
+#include <sys/queue.h>
+#include <stdlib.h>
+#include <inttypes.h>
+
+#include <rte_cycles.h>
+#include <rte_htimer_mgr.h>
+#include <rte_launch.h>
+#include <rte_malloc.h>
+#include <rte_random.h>
+
+static void
+nop_cb(struct rte_htimer *, void *)
+{
+}
+
+static uint64_t
+add_rand_timers(struct rte_htimer *timers, uint64_t num,
+		uint64_t timeout_start, uint64_t max_timeout)
+{
+	uint64_t i;
+	uint64_t expiration_times[num];
+	uint64_t start_ts;
+	uint64_t end_ts;
+
+	for (i = 0; i < num; i++)
+		expiration_times[i] =
+			1 + timeout_start + rte_rand_max(max_timeout - 1);
+
+	start_ts = rte_get_tsc_cycles();
+
+	for (i = 0; i < num; i++)
+		rte_htimer_mgr_add(&timers[i], expiration_times[i], 0, nop_cb,
+				   NULL, RTE_HTIMER_FLAG_ABSOLUTE_TIME);
+
+	/* make sure the timers are actually scheduled in the wheel */
+	rte_htimer_mgr_process();
+
+	end_ts = rte_get_tsc_cycles();
+
+	return end_ts - start_ts;
+}
+
+#define TIME_STEP 16
+
+static void
+test_add_manage_perf(const char *scenario_name, uint64_t num_timers,
+		     uint64_t timespan)
+{
+	uint64_t manage_calls;
+	struct rte_htimer *timers;
+	uint64_t start;
+	uint64_t now;
+	uint64_t start_ts;
+	uint64_t end_ts;
+	uint64_t add_latency;
+	uint64_t manage_latency;
+
+	rte_htimer_mgr_init(1);
+
+	manage_calls = timespan / TIME_STEP;
+
+	printf("Scenario: %s\n", scenario_name);
+	printf("    Configuration:\n");
+	printf("        Timers: %"PRIu64"\n", num_timers);
+	printf("        Max timeout: %"PRIu64" ticks\n", timespan);
+	printf("        Average timeouts/manage call: %.3f\n",
+	       num_timers / (double)manage_calls);
+	printf("        Time advance per manage call: %d\n", TIME_STEP);
+
+	printf("    Results:\n");
+
+	timers = rte_malloc(NULL, sizeof(struct rte_htimer) * num_timers,
+			    0);
+
+	if (timers == NULL)
+		rte_panic("Unable to allocate memory\n");
+
+	start = 1 + rte_rand_max(UINT64_MAX / 2);
+
+	rte_htimer_mgr_manage_time(start - 1);
+
+	add_latency = add_rand_timers(timers, num_timers, start, timespan);
+
+	start_ts = rte_get_tsc_cycles();
+
+	for (now = start; now < (start + timespan); now += TIME_STEP)
+		rte_htimer_mgr_manage_time(now);
+
+	end_ts = rte_get_tsc_cycles();
+
+	manage_latency = end_ts - start_ts;
+
+	printf("        %.0f TSC cycles / add op\n",
+	       (double)add_latency / num_timers);
+	printf("        %.0f TSC cycles / manage call\n",
+	       (double)manage_latency / manage_calls);
+	printf("        %.1f TSC cycles / tick\n",
+	       (double)manage_latency / timespan);
+
+	rte_htimer_mgr_deinit();
+
+	rte_free(timers);
+}
+
+#define ITERATIONS 500
+
+static int
+test_del_perf(uint64_t num_timers, uint64_t timespan)
+{
+	struct rte_htimer *timers;
+	uint64_t start;
+	uint64_t i, j;
+	uint64_t start_ts;
+	uint64_t end_ts;
+	uint64_t latency = 0;
+
+	rte_htimer_mgr_init(1);
+
+	timers = rte_malloc(NULL, sizeof(struct rte_htimer) * num_timers,
+			    0);
+
+	if (timers == NULL)
+		rte_panic("Unable to allocate memory\n");
+
+	start = 1 + rte_rand_max(UINT64_MAX / 2);
+
+	for (i = 0; i < ITERATIONS; i++) {
+		rte_htimer_mgr_manage_time(start - 1);
+
+		add_rand_timers(timers, num_timers, start, timespan);
+
+		/* A manage (or process) call is required to get all
+		 * timers scheduled, which may in turn make them a
+		 * little more expensive to remove.
+		 */
+		rte_htimer_mgr_manage_time(start);
+
+		start_ts = rte_get_tsc_cycles();
+
+		for (j = 0; j < num_timers; j++)
+			if (rte_htimer_mgr_cancel(&timers[j]) < 0)
+				return TEST_FAILED;
+
+		end_ts = rte_get_tsc_cycles();
+
+		latency += (end_ts - start_ts);
+
+		start += (timespan + 1);
+	}
+
+	printf("Timer delete: %.0f TSC cycles / call\n",
+	       (double)latency / (double)ITERATIONS / (double)num_timers);
+
+	rte_htimer_mgr_deinit();
+
+	rte_free(timers);
+
+	return TEST_SUCCESS;
+}
+
+static int
+target_lcore(void *arg)
+{
+	bool *stop = arg;
+
+	while (!__atomic_load_n(stop, __ATOMIC_RELAXED))
+		rte_htimer_mgr_manage();
+
+	return 0;
+}
+
+static void
+count_async_cb(struct rte_htimer *timer __rte_unused, int result,
+	       void *cb_arg)
+{
+	unsigned int *count = cb_arg;
+
+	if (result == RTE_HTIMER_MGR_ASYNC_RESULT_ADDED)
+		(*count)++;
+}
+
+static uint64_t
+s_to_tsc(double s)
+{
+	return s * rte_get_tsc_hz();
+}
+
+static uint64_t
+tsc_to_us(uint64_t tsc)
+{
+	return (double)tsc / (double)rte_get_tsc_hz() * 1e6;
+}
+
+#define ASYNC_ADD_TEST_TICK s_to_tsc(500e-9)
+/*
+ * The number of test timers must be kept less than size of the
+ * htimer-internal message ring for this test case to work.
+ */
+#define ASYNC_ADD_TEST_NUM_TIMERS 1000
+#define ASYNC_ADD_TEST_MIN_TIMEOUT (ASYNC_ADD_TEST_NUM_TIMERS * s_to_tsc(1e-6))
+#define ASYNC_ADD_TEST_MAX_TIMEOUT (2 * ASYNC_ADD_TEST_MIN_TIMEOUT)
+
+static void
+test_async_add_perf(void)
+{
+	uint64_t max_timeout = ASYNC_ADD_TEST_MAX_TIMEOUT;
+	uint64_t min_timeout = ASYNC_ADD_TEST_MIN_TIMEOUT;
+	unsigned int num_timers = ASYNC_ADD_TEST_NUM_TIMERS;
+	struct rte_htimer *timers;
+	bool *stop;
+	unsigned int lcore_id = rte_lcore_id();
+	unsigned int target_lcore_id =
+		rte_get_next_lcore(lcore_id, true, true);
+	uint64_t now;
+	uint64_t request_latency = 0;
+	uint64_t response_latency = 0;
+	unsigned int i;
+
+	rte_htimer_mgr_init(ASYNC_ADD_TEST_TICK);
+
+	timers = rte_malloc(NULL, sizeof(struct rte_htimer) * num_timers,
+			    RTE_CACHE_LINE_SIZE);
+	stop = rte_malloc(NULL, sizeof(bool), RTE_CACHE_LINE_SIZE);
+
+	if (timers == NULL || stop == NULL)
+		rte_panic("Unable to allocate memory\n");
+
+	*stop = false;
+
+	if (rte_eal_remote_launch(target_lcore, stop, target_lcore_id) != 0)
+		rte_panic("Unable to launch worker lcore\n");
+
+	/* wait for launch to complete */
+	rte_delay_us_block(100);
+
+	for (i = 0; i < ITERATIONS; i++) {
+		uint64_t expiration_times[num_timers];
+		unsigned int j;
+		uint64_t start_ts;
+		uint64_t end_ts;
+		unsigned int count = 0;
+
+		now = rte_get_tsc_cycles();
+
+		for (j = 0; j < num_timers; j++)
+			expiration_times[j] = now + min_timeout +
+				rte_rand_max(max_timeout - min_timeout);
+
+		start_ts = rte_get_tsc_cycles();
+
+		for (j = 0; j < num_timers; j++)
+			rte_htimer_mgr_async_add(&timers[j], target_lcore_id,
+					     expiration_times[j], 0,
+					     nop_cb, NULL,
+					     RTE_HTIMER_FLAG_ABSOLUTE_TIME,
+					     count_async_cb, &count);
+
+		end_ts = rte_get_tsc_cycles();
+
+		request_latency += (end_ts - start_ts);
+
+		/* wait long-enough for the target lcore to answered */
+		rte_delay_us_block(1 * num_timers);
+
+		start_ts = rte_get_tsc_cycles();
+
+		while (count != num_timers)
+			rte_htimer_mgr_process();
+
+		end_ts = rte_get_tsc_cycles();
+
+		response_latency += (end_ts - start_ts);
+
+		/* wait until all timeouts have fired */
+		rte_delay_us_block(tsc_to_us(max_timeout));
+	}
+
+	__atomic_store_n(stop, true, __ATOMIC_RELAXED);
+
+	rte_eal_mp_wait_lcore();
+
+	rte_free(timers);
+
+	rte_htimer_mgr_deinit();
+
+	printf("Timer async add:\n");
+	printf("    Configuration:\n");
+	printf("        Timers: %d\n", ASYNC_ADD_TEST_NUM_TIMERS);
+	printf("    Results:\n");
+	printf("        Source lcore cost: %.0f TSC cycles / add request\n",
+	       (double)request_latency / (double)ITERATIONS / num_timers);
+	printf("                           %.0f TSC cycles / async add "
+	       "response\n",
+	       (double)response_latency / (double)ITERATIONS / num_timers);
+}
+
+static int
+test_htimer_mgr_perf(void)
+{
+	rte_delay_us_block(10000);
+
+	test_add_manage_perf("Sparse", 100000, 10000000);
+
+	test_add_manage_perf("Dense", 100000, 200000);
+
+	test_add_manage_perf("Idle", 10, 100000);
+
+	test_add_manage_perf("Small", 1000, 100000);
+
+	if (test_del_perf(100000, 100000) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	test_async_add_perf();
+
+	return TEST_SUCCESS;
+}
+
+REGISTER_TEST_COMMAND(htimer_mgr_perf_autotest, test_htimer_mgr_perf);
diff --git a/app/test/test_htw.c b/app/test/test_htw.c
new file mode 100644
index 0000000000..3cddfaed7f
--- /dev/null
+++ b/app/test/test_htw.c
@@ -0,0 +1,478 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#include "test.h"
+
+#include <sys/queue.h>
+#include <stdlib.h>
+#include <inttypes.h>
+
+#include <rte_cycles.h>
+#include <rte_htw.h>
+#include <rte_random.h>
+
+struct recorder {
+	struct rte_htimer_list timeout_list;
+	uint64_t num_timeouts;
+};
+
+static void
+recorder_init(struct recorder *recorder)
+{
+	recorder->num_timeouts = 0;
+	LIST_INIT(&recorder->timeout_list);
+}
+
+static void
+recorder_cb(struct rte_htimer *timer, void *arg)
+{
+	struct recorder *recorder = arg;
+
+	recorder->num_timeouts++;
+
+	LIST_INSERT_HEAD(&recorder->timeout_list, timer, entry);
+}
+
+static int
+recorder_verify(struct recorder *recorder, uint64_t min_expiry,
+		uint64_t max_expiry)
+{
+	struct rte_htimer *timer;
+
+	LIST_FOREACH(timer, &recorder->timeout_list, entry) {
+		if (timer->expiration_time > max_expiry)
+			return TEST_FAILED;
+
+		if (timer->expiration_time < min_expiry)
+			return TEST_FAILED;
+	}
+
+	return TEST_SUCCESS;
+}
+
+static void
+add_rand_timers(struct rte_htw *htw, struct rte_htimer *timers,
+		uint64_t num, uint64_t timeout_start, uint64_t max_timeout,
+		rte_htimer_cb_t cb, void *cb_arg)
+{
+	uint64_t i;
+
+	for (i = 0; i < num; i++) {
+		struct rte_htimer *timer = &timers[i];
+		bool use_absolute = rte_rand() & 1;
+		unsigned int flags = 0;
+		uint64_t expiration_time;
+
+		expiration_time = timeout_start + rte_rand_max(max_timeout);
+
+		if (use_absolute)
+			flags |= RTE_HTIMER_FLAG_ABSOLUTE_TIME;
+		else {
+			uint64_t htw_current_time;
+
+			htw_current_time = rte_htw_current_time(htw);
+
+			if (expiration_time < htw_current_time)
+				expiration_time = 0;
+			else
+				expiration_time -= htw_current_time;
+		}
+
+		rte_htw_add(htw, timer, expiration_time, 0, cb, cb_arg, flags);
+	}
+}
+
+#define ADVANCE_TIME_MAX_STEP 16
+
+static int
+test_rand_timers(uint64_t in_flight_timers, uint64_t max_timeout,
+		 uint64_t runtime)
+{
+	struct recorder recorder;
+	struct rte_htimer *timers;
+	uint64_t fired = 0;
+	uint64_t start;
+	uint64_t now;
+	struct rte_htw *htw;
+	uint64_t added;
+
+	recorder_init(&recorder);
+
+	timers = malloc(sizeof(struct rte_htimer) * in_flight_timers);
+
+	if (timers == NULL)
+		rte_panic("Unable to allocate heap memory\n");
+
+	start = rte_rand_max(UINT64_MAX - max_timeout);
+
+	htw = rte_htw_create();
+
+	if (htw == NULL)
+		return TEST_FAILED;
+
+	added = in_flight_timers;
+	add_rand_timers(htw, timers, added, start + 1, max_timeout,
+			recorder_cb, &recorder);
+
+	for (now = start; now < (start + runtime); ) {
+		uint64_t advance;
+
+		advance = rte_rand_max(ADVANCE_TIME_MAX_STEP);
+
+		now += advance;
+
+		rte_htw_manage(htw, now);
+
+		if (recorder.num_timeouts > 0) {
+			struct rte_htimer *timer;
+
+			if (advance == 0)
+				return TEST_FAILED;
+
+			if (recorder_verify(&recorder, now - advance + 1, now)
+			    != TEST_SUCCESS)
+				return TEST_FAILED;
+
+			while ((timer = LIST_FIRST(&recorder.timeout_list))
+			       != NULL) {
+				LIST_REMOVE(timer, entry);
+
+				add_rand_timers(htw, timer, 1,
+						now + 1, max_timeout,
+						recorder_cb, &recorder);
+				added++;
+				fired++;
+			}
+
+			recorder.num_timeouts = 0;
+		}
+	}
+
+	/* finish the remaining timeouts */
+
+	rte_htw_manage(htw, now + max_timeout);
+
+	if (recorder_verify(&recorder, now, now + max_timeout) != TEST_SUCCESS)
+		return TEST_FAILED;
+	fired += recorder.num_timeouts;
+
+	if (fired != added)
+		return TEST_FAILED;
+
+	rte_htw_destroy(htw);
+
+	free(timers);
+
+	return TEST_SUCCESS;
+}
+
+struct counter_state {
+	int calls;
+	struct rte_htw *htw;
+	bool cancel;
+};
+
+static void
+count_timeouts_cb(struct rte_htimer *timer __rte_unused, void *arg)
+{
+	struct counter_state *state = arg;
+
+	state->calls++;
+
+	if (state->cancel)
+		rte_htw_cancel(state->htw, timer);
+}
+
+static int
+test_single_timeout_type(uint64_t now, uint64_t distance, bool use_absolute)
+{
+	struct rte_htw *htw;
+	struct counter_state cstate = {};
+	struct rte_htimer timer;
+	uint64_t expiration_time;
+	unsigned int flags = 0;
+
+	htw = rte_htw_create();
+
+	rte_htw_manage(htw, now);
+
+	if (use_absolute) {
+		expiration_time = now + distance;
+		flags |= RTE_HTIMER_FLAG_ABSOLUTE_TIME;
+	} else
+		expiration_time = distance;
+
+	rte_htw_add(htw, &timer, expiration_time, 0, count_timeouts_cb,
+		    &cstate, flags);
+
+	rte_htw_manage(htw, now);
+
+	if (cstate.calls != 0)
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now + distance - 1);
+
+	if (cstate.calls != 0)
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now + distance);
+
+
+	if (cstate.calls != 1)
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now + distance);
+
+	if (cstate.calls != 1)
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now + distance + 1);
+
+	if (cstate.calls != 1)
+		return TEST_FAILED;
+
+	rte_htw_destroy(htw);
+
+	return TEST_SUCCESS;
+}
+
+static int
+test_single_timeout(uint64_t now, uint64_t distance)
+{
+
+	int rc;
+
+	rc = test_single_timeout_type(now, distance, true);
+	if (rc < 0)
+		return rc;
+
+	rc = test_single_timeout_type(now, distance, false);
+	if (rc < 0)
+		return rc;
+
+	return TEST_SUCCESS;
+}
+
+static int
+test_periodical_timer(uint64_t now, uint64_t start, uint64_t period)
+{
+	struct rte_htw *htw;
+	struct counter_state cstate;
+	struct rte_htimer timer;
+
+	htw = rte_htw_create();
+
+	cstate = (struct counter_state) {
+		.htw = htw
+	};
+
+	rte_htw_manage(htw, now);
+
+	rte_htw_add(htw, &timer, start, period, count_timeouts_cb,
+		    &cstate, RTE_HTIMER_FLAG_PERIODICAL);
+
+	rte_htw_manage(htw, now);
+
+	if (cstate.calls != 0)
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now + start - 1);
+
+	if (cstate.calls != 0)
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now + start);
+
+	if (cstate.calls != 1)
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now + start + 1);
+
+	if (cstate.calls != 1)
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now + start + period);
+
+	if (cstate.calls != 2)
+		return TEST_FAILED;
+
+	cstate.cancel = true;
+
+	rte_htw_manage(htw, now + start + 2 * period);
+
+	if (cstate.calls != 3)
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now + start + 3 * period);
+
+	if (cstate.calls != 3)
+		return TEST_FAILED;
+
+	rte_htw_destroy(htw);
+
+	return TEST_SUCCESS;
+}
+
+#define CANCEL_ITERATIONS 1000
+#define CANCEL_NUM_TIMERS 1000
+#define CANCEL_MAX_DISTANCE 10000
+
+static int
+test_cancel_timer(void)
+{
+	uint64_t now;
+	struct rte_htw *htw;
+	int i;
+	struct rte_htimer timers[CANCEL_NUM_TIMERS];
+	struct counter_state timeouts[CANCEL_NUM_TIMERS];
+
+	now = rte_rand_max(UINT64_MAX / 2);
+
+	htw = rte_htw_create();
+
+	for (i = 0; i < CANCEL_ITERATIONS; i++) {
+		int j;
+		int target;
+
+		for (j = 0; j < CANCEL_NUM_TIMERS; j++) {
+			struct rte_htimer *timer = &timers[j];
+			uint64_t expiration_time;
+
+			timeouts[j] = (struct counter_state) {};
+
+			expiration_time = now + 1 +
+				rte_rand_max(CANCEL_MAX_DISTANCE);
+
+			rte_htw_add(htw, timer, expiration_time, 0,
+				    count_timeouts_cb, &timeouts[j],
+				    RTE_HTIMER_FLAG_ABSOLUTE_TIME);
+		}
+
+		target = rte_rand_max(CANCEL_NUM_TIMERS);
+
+		rte_htw_cancel(htw, &timers[target]);
+
+		now += CANCEL_MAX_DISTANCE;
+
+		rte_htw_manage(htw, now);
+
+		for (j = 0; j < CANCEL_NUM_TIMERS; j++) {
+			if (j != target) {
+				if (timeouts[j].calls != 1)
+					return TEST_FAILED;
+			} else {
+				if (timeouts[j].calls > 0)
+					return TEST_FAILED;
+			}
+		}
+	}
+
+	rte_htw_destroy(htw);
+
+	return TEST_SUCCESS;
+}
+
+static void
+nop_cb(struct rte_htimer *timer __rte_unused, void *arg __rte_unused)
+{
+}
+
+#define NEXT_NUM_TIMERS 1000
+#define NEXT_MAX_DISTANCE 10000
+
+static int
+test_next_timeout(void)
+{
+	uint64_t now;
+	struct rte_htw *htw;
+	int i;
+	struct rte_htimer timers[NEXT_NUM_TIMERS];
+	uint64_t last_expiration;
+
+	now = rte_rand_max(NEXT_MAX_DISTANCE);
+
+	htw = rte_htw_create();
+
+	if (rte_htw_next_timeout(htw, UINT64_MAX) != UINT64_MAX)
+		return TEST_FAILED;
+	if (rte_htw_next_timeout(htw, now + 1) != (now + 1))
+		return TEST_FAILED;
+
+	rte_htw_manage(htw, now);
+
+	last_expiration = now + NEXT_MAX_DISTANCE * NEXT_NUM_TIMERS;
+
+	for (i = 0; i < NEXT_NUM_TIMERS; i++) {
+		struct rte_htimer *timer = &timers[i];
+		uint64_t expiration;
+		uint64_t upper_bound;
+
+		/* add timers, each new one closer than the last */
+
+		expiration = last_expiration - rte_rand_max(NEXT_MAX_DISTANCE);
+
+		rte_htw_add(htw, timer, expiration, 0, nop_cb, NULL,
+			    RTE_HTIMER_FLAG_ABSOLUTE_TIME);
+
+		if (rte_htw_next_timeout(htw, UINT64_MAX) != expiration)
+			return TEST_FAILED;
+
+		upper_bound = expiration + rte_rand_max(100000);
+
+		if (rte_htw_next_timeout(htw, upper_bound) != expiration)
+			return TEST_FAILED;
+
+		upper_bound = expiration - rte_rand_max(expiration);
+
+		if (rte_htw_next_timeout(htw, upper_bound) != upper_bound)
+			return TEST_FAILED;
+
+		last_expiration = expiration;
+	}
+
+	rte_htw_destroy(htw);
+
+	return TEST_SUCCESS;
+}
+
+static int
+test_htw(void)
+{
+	if (test_single_timeout(0, 10) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_single_timeout(0, 254) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_single_timeout(0, 255) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_single_timeout(255, 1) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_single_timeout(254, 2) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_periodical_timer(10000, 500, 2) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_periodical_timer(1234567, 12345, 100000) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_cancel_timer() != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_rand_timers(1000, 100000, 100000000) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_rand_timers(100000, 100000, 1000000) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_next_timeout() != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	return TEST_SUCCESS;
+}
+
+REGISTER_TEST_COMMAND(htw_autotest, test_htw);
diff --git a/app/test/test_htw_perf.c b/app/test/test_htw_perf.c
new file mode 100644
index 0000000000..65901f0874
--- /dev/null
+++ b/app/test/test_htw_perf.c
@@ -0,0 +1,181 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#include "test.h"
+
+#include <sys/queue.h>
+#include <stdlib.h>
+#include <inttypes.h>
+
+#include <rte_cycles.h>
+#include <rte_htw.h>
+#include <rte_malloc.h>
+#include <rte_random.h>
+
+static void
+nop_cb(struct rte_htimer *timer __rte_unused, void *arg __rte_unused)
+{
+}
+
+static void
+add_rand_timers(struct rte_htw *htw, struct rte_htimer *timers,
+		uint64_t num, uint64_t timeout_start, uint64_t max_timeout)
+{
+	uint64_t i;
+	uint64_t expiration_times[num];
+	uint64_t start_ts;
+	uint64_t end_ts;
+
+	for (i = 0; i < num; i++)
+		expiration_times[i] = timeout_start + rte_rand_max(max_timeout);
+
+	start_ts = rte_get_tsc_cycles();
+
+	for (i = 0; i < num; i++) {
+		struct rte_htimer *timer = &timers[i];
+
+		rte_htw_add(htw, timer, expiration_times[i], 0, nop_cb, NULL,
+			    RTE_HTIMER_FLAG_ABSOLUTE_TIME);
+	}
+
+	/* actually install the timers */
+	rte_htw_process(htw);
+
+	end_ts = rte_get_tsc_cycles();
+
+	printf("        %.0f TSC cycles / add op\n",
+	       (double)(end_ts - start_ts) / num);
+}
+
+#define TIME_STEP 16
+
+static int
+test_add_manage_perf(const char *scenario_name, uint64_t num_timers,
+		     uint64_t timespan)
+{
+	uint64_t manage_calls;
+	struct rte_htimer *timers;
+	uint64_t start;
+	uint64_t now;
+	struct rte_htw *htw;
+	uint64_t start_ts;
+	uint64_t end_ts;
+	double latency;
+
+	manage_calls = timespan / TIME_STEP;
+
+	printf("Scenario: %s\n", scenario_name);
+	printf("    Configuration:\n");
+	printf("        Timers: %"PRIu64"\n", num_timers);
+	printf("        Max timeout: %"PRIu64" ticks\n", timespan);
+	printf("        Average timeouts/manage call: %.3f\n",
+	       num_timers / (double)manage_calls);
+	printf("        Time advance per manage call: %d\n", TIME_STEP);
+
+	printf("    Results:\n");
+
+	timers = rte_malloc(NULL, sizeof(struct rte_htimer) *
+			    num_timers, 0);
+
+	if (timers == NULL)
+		rte_panic("Unable to allocate memory\n");
+
+	htw = rte_htw_create();
+
+	if (htw == NULL)
+		return TEST_FAILED;
+
+	start = 1 + rte_rand_max(UINT64_MAX / 2);
+
+	rte_htw_manage(htw, start - 1);
+
+	add_rand_timers(htw, timers, num_timers, start, timespan);
+
+	start_ts = rte_get_tsc_cycles();
+
+	for (now = start; now < (start + timespan); now += TIME_STEP)
+		rte_htw_manage(htw, now);
+
+	end_ts = rte_get_tsc_cycles();
+
+	latency = end_ts - start_ts;
+
+	printf("        %.0f TSC cycles / manage call\n",
+	       latency / manage_calls);
+	printf("        %.1f TSC cycles / tick\n", latency / timespan);
+
+	rte_htw_destroy(htw);
+
+	rte_free(timers);
+
+	return TEST_SUCCESS;
+}
+
+static int
+test_cancel_perf(uint64_t num_timers, uint64_t timespan)
+{
+	struct rte_htimer *timers;
+	uint64_t start;
+	struct rte_htw *htw;
+	uint64_t i;
+	uint64_t start_ts;
+	uint64_t end_ts;
+	double latency;
+
+	timers = rte_malloc(NULL, sizeof(struct rte_htimer) * num_timers, 0);
+
+	if (timers == NULL)
+		rte_panic("Unable to allocate memory\n");
+
+	htw = rte_htw_create();
+
+	if (htw == NULL)
+		return TEST_FAILED;
+
+	start = 1 + rte_rand_max(UINT64_MAX / 2);
+
+	rte_htw_manage(htw, start - 1);
+
+	add_rand_timers(htw, timers, num_timers, start, timespan);
+
+	start_ts = rte_get_tsc_cycles();
+
+	for (i = 0; i < num_timers; i++)
+		rte_htw_cancel(htw, &timers[i]);
+
+	end_ts = rte_get_tsc_cycles();
+
+	latency = end_ts - start_ts;
+
+	printf("Timer delete: %.0f TSC cycles / call\n",
+	       latency / num_timers);
+
+	rte_htw_destroy(htw);
+
+	rte_free(timers);
+
+	return TEST_SUCCESS;
+}
+
+static int
+test_htw_perf(void)
+{
+	rte_delay_us_block(100);
+
+	if (test_add_manage_perf("Sparse", 100000, 10000000) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_add_manage_perf("Dense", 100000, 200000) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_add_manage_perf("Idle", 10, 100000) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	if (test_cancel_perf(100000, 100000) != TEST_SUCCESS)
+		return TEST_FAILED;
+
+	return TEST_SUCCESS;
+}
+
+REGISTER_TEST_COMMAND(htw_perf_autotest, test_htw_perf);
diff --git a/doc/api/doxy-api-index.md b/doc/api/doxy-api-index.md
index 2deec7ea19..5ea1dfa262 100644
--- a/doc/api/doxy-api-index.md
+++ b/doc/api/doxy-api-index.md
@@ -67,6 +67,8 @@ The public API headers are grouped by topics:
 - **timers**:
   [cycles](@ref rte_cycles.h),
   [timer](@ref rte_timer.h),
+  [htimer_mgr](@ref rte_htimer_mgr.h),
+  [htimer](@ref rte_htimer.h),
   [alarm](@ref rte_alarm.h)
 
 - **locks**:
@@ -163,7 +165,8 @@ The public API headers are grouped by topics:
   [ring](@ref rte_ring.h),
   [stack](@ref rte_stack.h),
   [tailq](@ref rte_tailq.h),
-  [bitmap](@ref rte_bitmap.h)
+  [bitmap](@ref rte_bitmap.h),
+  [bitset](@ref rte_bitset.h)
 
 - **packet framework**:
   * [port](@ref rte_port.h):
diff --git a/doc/api/doxy-api.conf.in b/doc/api/doxy-api.conf.in
index e859426099..c0cd64db34 100644
--- a/doc/api/doxy-api.conf.in
+++ b/doc/api/doxy-api.conf.in
@@ -45,6 +45,7 @@ INPUT                   = @TOPDIR@/doc/api/doxy-api-index.md \
                           @TOPDIR@/lib/gro \
                           @TOPDIR@/lib/gso \
                           @TOPDIR@/lib/hash \
+                          @TOPDIR@/lib/htimer \
                           @TOPDIR@/lib/ip_frag \
                           @TOPDIR@/lib/ipsec \
                           @TOPDIR@/lib/jobstats \
diff --git a/lib/htimer/meson.build b/lib/htimer/meson.build
new file mode 100644
index 0000000000..2dd5d6a24b
--- /dev/null
+++ b/lib/htimer/meson.build
@@ -0,0 +1,7 @@
+# SPDX-License-Identifier: BSD-3-Clause
+# Copyright(c) 2023 Ericsson AB
+
+sources = files('rte_htw.c', 'rte_htimer_msg_ring.c', 'rte_htimer_mgr.c')
+headers = files('rte_htimer_mgr.h', 'rte_htimer.h')
+
+deps += ['ring']
diff --git a/lib/htimer/rte_htimer.h b/lib/htimer/rte_htimer.h
new file mode 100644
index 0000000000..e245b30c65
--- /dev/null
+++ b/lib/htimer/rte_htimer.h
@@ -0,0 +1,65 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#ifndef _RTE_HTIMER_H_
+#define _RTE_HTIMER_H_
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <sys/queue.h>
+
+struct rte_htimer;
+
+typedef void (*rte_htimer_cb_t)(struct rte_htimer *, void *);
+
+struct rte_htimer {
+	/**
+	 * Absolute timer expiration time (in ticks).
+	 */
+	uint64_t expiration_time;
+	/**
+	 * Time between expirations (in ticks). Zero for one-shot timers.
+	 */
+	uint64_t period;
+	/**
+	 * Owning lcore (in ticks). Zero for one-shot timers. May safely
+	 * be read from any thread.
+	 */
+	uint32_t owner_lcore_id;
+	/**
+	 * The current state of the timer.
+	 */
+	uint32_t state:4;
+	/**
+	 * Flags set on this timer.
+	 */
+	uint32_t flags:28;
+	/**
+	 * User-specified callback function pointer.
+	 */
+	rte_htimer_cb_t cb;
+	/**
+	 * Argument for user callback.
+	 */
+	void *cb_arg;
+	/**
+	 * Pointers used to add timer to various internal lists.
+	 */
+	LIST_ENTRY(rte_htimer) entry;
+};
+
+#define RTE_HTIMER_FLAG_ABSOLUTE_TIME (UINT32_C(1) << 0)
+#define RTE_HTIMER_FLAG_PERIODICAL (UINT32_C(1) << 1)
+
+#define RTE_HTIMER_STATE_PENDING 1
+#define RTE_HTIMER_STATE_EXPIRED 2
+#define RTE_HTIMER_STATE_CANCELED 3
+
+LIST_HEAD(rte_htimer_list, rte_htimer);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _RTE_HTIMER_H_ */
diff --git a/lib/htimer/rte_htimer_mgr.c b/lib/htimer/rte_htimer_mgr.c
new file mode 100644
index 0000000000..7bb1630680
--- /dev/null
+++ b/lib/htimer/rte_htimer_mgr.c
@@ -0,0 +1,488 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#include <stdbool.h>
+#include <sys/queue.h>
+#include <inttypes.h>
+#include <unistd.h>
+
+#include <rte_branch_prediction.h>
+#include <rte_common.h>
+#include <rte_errno.h>
+#include <rte_htw.h>
+#include <rte_prefetch.h>
+#include <rte_ring_elem.h>
+
+#include "rte_htimer_mgr.h"
+#include "rte_htimer_msg.h"
+#include "rte_htimer_msg_ring.h"
+
+#define MAX_MSG_BATCH_SIZE 16
+
+struct htimer_mgr {
+	struct rte_htimer_msg_ring *msg_ring;
+	struct rte_htw *htw;
+
+	unsigned int async_msgs_idx __rte_cache_aligned;
+	unsigned int num_async_msgs;
+	struct rte_htimer_msg async_msgs[MAX_MSG_BATCH_SIZE];
+} __rte_cache_aligned;
+
+static uint64_t tsc_per_tick;
+
+static struct htimer_mgr mgrs[RTE_MAX_LCORE + 1];
+
+#define MAX_ASYNC_TRANSACTIONS 1024
+#define MSG_RING_SIZE MAX_ASYNC_TRANSACTIONS
+
+static inline uint64_t
+tsc_to_tick(uint64_t tsc)
+{
+	return tsc / tsc_per_tick;
+}
+
+static inline uint64_t
+tsc_to_tick_round_up(uint64_t tsc)
+{
+	uint64_t tick;
+	uint64_t remainder;
+
+	tick = tsc / tsc_per_tick;
+	remainder = tsc % tsc_per_tick;
+
+	if (likely(remainder > 0))
+		tick++;
+
+	return tick;
+}
+
+static uint64_t
+tick_to_tsc(uint64_t tick)
+{
+	return tick * tsc_per_tick;
+}
+
+static struct htimer_mgr *
+mgr_get(unsigned int lcore_id)
+{
+	return &mgrs[lcore_id];
+}
+
+static int
+mgr_init(unsigned int lcore_id)
+{
+	char ring_name[RTE_RING_NAMESIZE];
+	unsigned int socket_id;
+	struct htimer_mgr *mgr = &mgrs[lcore_id];
+
+	socket_id = rte_lcore_to_socket_id(lcore_id);
+
+	snprintf(ring_name, sizeof(ring_name), "htimer_%d", lcore_id);
+
+	mgr->msg_ring =
+		rte_htimer_msg_ring_create(ring_name, MSG_RING_SIZE, socket_id,
+					   RING_F_SC_DEQ);
+
+	if (mgr->msg_ring == NULL)
+		goto err;
+
+	mgr->htw = rte_htw_create();
+
+	if (mgr->htw == NULL)
+		goto err_free_ring;
+
+	mgr->async_msgs_idx = 0;
+	mgr->num_async_msgs = 0;
+
+	return 0;
+
+err_free_ring:
+	rte_htimer_msg_ring_free(mgr->msg_ring);
+err:
+	return -ENOMEM;
+}
+
+static void
+mgr_deinit(unsigned int lcore_id)
+{
+	struct htimer_mgr *mgr = &mgrs[lcore_id];
+
+	rte_htw_destroy(mgr->htw);
+
+	rte_htimer_msg_ring_free(mgr->msg_ring);
+}
+
+static volatile bool initialized;
+
+static void
+assure_initialized(void)
+{
+	RTE_ASSERT(initialized);
+}
+
+int
+rte_htimer_mgr_init(uint64_t _tsc_per_tick)
+{
+	unsigned int lcore_id;
+
+	RTE_VERIFY(!initialized);
+
+	tsc_per_tick = _tsc_per_tick;
+
+	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
+		int rc;
+
+		rc = mgr_init(lcore_id);
+
+		if (rc < 0) {
+			unsigned int deinit_lcore_id;
+
+			for (deinit_lcore_id = 0; deinit_lcore_id < lcore_id;
+			     deinit_lcore_id++)
+				mgr_deinit(deinit_lcore_id);
+
+			return rc;
+		}
+	}
+
+	initialized = true;
+
+	return 0;
+}
+
+void
+rte_htimer_mgr_deinit(void)
+{
+	unsigned int lcore_id;
+
+	assure_initialized();
+
+	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
+		mgr_deinit(lcore_id);
+
+	initialized = false;
+}
+
+void
+rte_htimer_mgr_add(struct rte_htimer *timer, uint64_t expiration_time_tsc,
+		   uint64_t period_tsc, rte_htimer_cb_t timer_cb,
+		   void *timer_cb_arg, uint32_t flags)
+{
+	unsigned int lcore_id = rte_lcore_id();
+	struct htimer_mgr *mgr = mgr_get(lcore_id);
+	uint64_t expiration_time_tick =
+		tsc_to_tick_round_up(expiration_time_tsc);
+	uint64_t period_tick =
+		tsc_to_tick_round_up(period_tsc);
+
+	assure_initialized();
+
+	rte_htw_add(mgr->htw, timer, expiration_time_tick, period_tick,
+		    timer_cb, timer_cb_arg, flags);
+
+	timer->owner_lcore_id = lcore_id;
+}
+
+int
+rte_htimer_mgr_cancel(struct rte_htimer *timer)
+{
+	unsigned int lcore_id = rte_lcore_id();
+	struct htimer_mgr *mgr = mgr_get(lcore_id);
+
+	assure_initialized();
+
+	RTE_ASSERT(timer->owner_lcore_id == lcore_id);
+
+	switch (timer->state) {
+	case RTE_HTIMER_STATE_PENDING:
+		rte_htw_cancel(mgr->htw, timer);
+		return 0;
+	case RTE_HTIMER_STATE_EXPIRED:
+		return -ETIME;
+	default:
+		RTE_ASSERT(timer->state == RTE_HTIMER_STATE_CANCELED);
+		return -ENOENT;
+	}
+}
+
+static int
+send_msg(unsigned int receiver_lcore_id, enum rte_htimer_msg_type msg_type,
+	 struct rte_htimer *timer, rte_htimer_mgr_async_op_cb_t async_cb,
+	 void *async_cb_arg, const struct rte_htimer_msg_request *request,
+	 const struct rte_htimer_msg_response *response)
+{
+	struct htimer_mgr *receiver_mgr;
+	struct rte_htimer_msg_ring *receiver_ring;
+	struct rte_htimer_msg msg = (struct rte_htimer_msg) {
+		.msg_type = msg_type,
+		.timer = timer,
+		.async_cb = async_cb,
+		.async_cb_arg = async_cb_arg
+	};
+	int rc;
+
+	if (request != NULL)
+		msg.request = *request;
+	else
+		msg.response = *response;
+
+	receiver_mgr = mgr_get(receiver_lcore_id);
+
+	receiver_ring = receiver_mgr->msg_ring;
+
+	rc = rte_htimer_msg_ring_enqueue(receiver_ring, &msg);
+
+	return rc;
+}
+
+static int
+send_request(unsigned int receiver_lcore_id, enum rte_htimer_msg_type msg_type,
+	     struct rte_htimer *timer,
+	     rte_htimer_mgr_async_op_cb_t async_cb, void *async_cb_arg)
+{
+	unsigned int lcore_id = rte_lcore_id();
+	struct rte_htimer_msg_request request = {
+		.source_lcore_id = lcore_id
+	};
+
+	return send_msg(receiver_lcore_id, msg_type, timer, async_cb,
+			async_cb_arg, &request, NULL);
+}
+
+static int
+send_response(unsigned int receiver_lcore_id, enum rte_htimer_msg_type msg_type,
+	      struct rte_htimer *timer,
+	      rte_htimer_mgr_async_op_cb_t async_cb, void *async_cb_arg,
+	      int result)
+{
+	struct rte_htimer_msg_response response = {
+		.result = result
+	};
+
+	return send_msg(receiver_lcore_id, msg_type, timer, async_cb,
+			async_cb_arg, NULL, &response);
+}
+
+int
+rte_htimer_mgr_async_add(struct rte_htimer *timer,
+			 unsigned int target_lcore_id,
+			 uint64_t expiration_time, uint64_t period,
+			 rte_htimer_cb_t timer_cb, void *timer_cb_arg,
+			 uint32_t flags,
+			 rte_htimer_mgr_async_op_cb_t async_cb,
+			 void *async_cb_arg)
+{
+	*timer = (struct rte_htimer) {
+		.expiration_time = expiration_time,
+		.period = period,
+		.owner_lcore_id = target_lcore_id,
+		.flags = flags,
+		.cb = timer_cb,
+		.cb_arg = timer_cb_arg
+	};
+
+	assure_initialized();
+
+	if (send_request(target_lcore_id, rte_htimer_msg_type_add_request,
+			 timer, async_cb, async_cb_arg) < 0)
+		return -EBUSY;
+
+	return 0;
+}
+
+int
+rte_htimer_mgr_async_cancel(struct rte_htimer *timer,
+			    rte_htimer_mgr_async_op_cb_t async_cb,
+			    void *async_cb_arg)
+{
+	if (send_request(timer->owner_lcore_id,
+			 rte_htimer_msg_type_cancel_request,
+			 timer, async_cb, async_cb_arg) < 0)
+		return -EBUSY;
+
+	return 0;
+}
+
+static int
+process_add_request(struct rte_htimer_msg *request)
+{
+	struct rte_htimer *timer = request->timer;
+
+	if (request->async_cb != NULL &&
+	    send_response(request->request.source_lcore_id,
+			  rte_htimer_msg_type_add_response, timer,
+			  request->async_cb, request->async_cb_arg,
+			  RTE_HTIMER_MGR_ASYNC_RESULT_ADDED) < 0)
+		return -EBUSY;
+
+	rte_htimer_mgr_add(timer, timer->expiration_time, timer->period,
+			   timer->cb, timer->cb_arg, timer->flags);
+
+	return 0;
+}
+
+static int
+process_cancel_request(struct rte_htimer_msg *request)
+{
+	unsigned int lcore_id = rte_lcore_id();
+	struct htimer_mgr *mgr = mgr_get(lcore_id);
+	struct rte_htimer *timer = request->timer;
+	int result;
+
+	switch (timer->state) {
+	case RTE_HTIMER_STATE_PENDING:
+		result = RTE_HTIMER_MGR_ASYNC_RESULT_CANCELED;
+		break;
+	case RTE_HTIMER_STATE_CANCELED:
+		result = RTE_HTIMER_MGR_ASYNC_RESULT_ALREADY_CANCELED;
+		break;
+	case RTE_HTIMER_STATE_EXPIRED:
+		result = RTE_HTIMER_MGR_ASYNC_RESULT_EXPIRED;
+		break;
+	default:
+		RTE_ASSERT(0);
+		result = -1;
+	}
+
+	if (request->async_cb != NULL &&
+	    send_response(request->request.source_lcore_id,
+			  rte_htimer_msg_type_cancel_response, timer,
+			  request->async_cb, request->async_cb_arg,
+			  result) < 0)
+		return -EBUSY;
+
+	if (timer->state == RTE_HTIMER_STATE_PENDING)
+		rte_htw_cancel(mgr->htw, timer);
+
+	return 0;
+}
+
+static int
+process_response(struct rte_htimer_msg *msg)
+{
+	struct rte_htimer_msg_response *response = &msg->response;
+
+	if (msg->async_cb != NULL)
+		msg->async_cb(msg->timer, response->result, msg->async_cb_arg);
+
+	return 0;
+}
+
+static int
+process_msg(struct rte_htimer_msg *msg)
+{
+	switch (msg->msg_type) {
+	case rte_htimer_msg_type_add_request:
+		return process_add_request(msg);
+	case rte_htimer_msg_type_cancel_request:
+		return process_cancel_request(msg);
+	case rte_htimer_msg_type_add_response:
+	case rte_htimer_msg_type_cancel_response:
+		return process_response(msg);
+	default:
+		RTE_ASSERT(0);
+		return -EBUSY;
+	}
+}
+
+static void
+dequeue_async_msgs(struct htimer_mgr *mgr)
+{
+	if (mgr->num_async_msgs == 0) {
+		unsigned int i;
+
+		mgr->async_msgs_idx = 0;
+
+		mgr->num_async_msgs =
+			rte_htimer_msg_ring_dequeue_burst(mgr->msg_ring,
+							  mgr->async_msgs,
+							  MAX_MSG_BATCH_SIZE);
+
+		for (i = 0; i < mgr->num_async_msgs; i++)
+			rte_prefetch1(mgr->async_msgs[i].timer);
+	}
+}
+
+static void
+process_async(struct htimer_mgr *mgr)
+{
+	for (;;) {
+		struct rte_htimer_msg *msg;
+
+		dequeue_async_msgs(mgr);
+
+		if (mgr->num_async_msgs == 0)
+			break;
+
+		msg = &mgr->async_msgs[mgr->async_msgs_idx];
+
+		if (process_msg(msg) < 0)
+			break;
+
+		mgr->num_async_msgs--;
+		mgr->async_msgs_idx++;
+	}
+}
+
+void
+rte_htimer_mgr_manage_time(uint64_t current_time)
+{
+	unsigned int lcore_id = rte_lcore_id();
+	struct htimer_mgr *mgr = mgr_get(lcore_id);
+	uint64_t current_tick;
+
+	assure_initialized();
+
+	process_async(mgr);
+
+	current_tick = tsc_to_tick(current_time);
+
+	rte_htw_manage(mgr->htw, current_tick);
+}
+
+void
+rte_htimer_mgr_manage(void)
+{
+	uint64_t current_time;
+
+	assure_initialized();
+
+	current_time = rte_get_tsc_cycles();
+
+	rte_htimer_mgr_manage_time(current_time);
+}
+
+void
+rte_htimer_mgr_process(void)
+{
+	unsigned int lcore_id = rte_lcore_id();
+	struct htimer_mgr *mgr = mgr_get(lcore_id);
+
+	process_async(mgr);
+	assure_initialized();
+
+	rte_htw_process(mgr->htw);
+}
+
+uint64_t
+rte_htimer_mgr_current_time(void)
+{
+	uint64_t current_tick;
+
+	current_tick = rte_htimer_mgr_current_tick();
+
+	return tick_to_tsc(current_tick);
+}
+
+uint64_t
+rte_htimer_mgr_current_tick(void)
+{
+	unsigned int lcore_id = rte_lcore_id();
+	struct htimer_mgr *mgr = mgr_get(lcore_id);
+	uint64_t current_tick;
+
+	current_tick = rte_htw_current_time(mgr->htw);
+
+	return current_tick;
+}
diff --git a/lib/htimer/rte_htimer_mgr.h b/lib/htimer/rte_htimer_mgr.h
new file mode 100644
index 0000000000..1fbd69dbf6
--- /dev/null
+++ b/lib/htimer/rte_htimer_mgr.h
@@ -0,0 +1,497 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#ifndef _RTE_HTIMER_MGR_H_
+#define _RTE_HTIMER_MGR_H_
+
+/**
+ * @file
+ *
+ * RTE High-performance Timer Manager
+ *
+ * The high-performance timer manager (htimer_mgr) API provides access
+ * to a low-overhead, scalable timer service.
+ *
+ * The functionality offered similar to that of <rte_timer.h>, but the
+ * internals differs significantly, and there are slight differences
+ * in the programming interface as well.
+ *
+ * Core timer management is implemented by means of a hierarchical
+ * timer wheel (HWT), as per the Varghese and Lauck paper <em>Hashed
+ * and Hierarchical Timing Wheels: Data Structures for the Efficient
+ * Implementation of a Timer Facility</em>.
+ *
+ * Varghese et al's approach is further enhanced by the placement of a
+ * bitset in front of each wheel's slots. Each slot has a
+ * corresponding bit in the bitset. If a bit is clear, there are no
+ * pending timers scheduled for that slot. A set bit means there
+ * potentially are timers scheduled for that slot. This scheme reduces
+ * the overhead of the rte_htimer_mgr_manage() function, where slots
+ * of one or more of the wheels of the thread's HWT are scanned if
+ * time has progressed since last call. This improves performance is
+ * all cases, except for very densely populated timer wheels.
+ *
+ * One such HWT is instantiated for each lcore (EAL thread), and
+ * instances are also available for registered non-EAL threads.
+ *
+ * The <rte_htimer_mgr.h> API may not be called from unregistered
+ * non-EAL threads.
+ *
+ * The per-lcore-id HWT instance is private to that thread.
+ *
+ * The htimer API supports scheduling timers to a different thread
+ * (and thus, a different HWT) than the caller's. It is also possible
+ * to cancel timers managed by a "remote" timer wheel.
+ *
+ * All interaction (i.e., adding timers to or removing timers from) a
+ * remote HWT is done by sending a request, in the form of message on
+ * a DPDK ring, to that instance. Such requests are processed and, if
+ * required, acknowledged when the remote (target) thread calls
+ * rte_htimer_mgr_manage(), rte_htimer_mgr_manage_time() or
+ * rte_htimer_mgr_process().
+ *
+ * This message-based interaction avoid comparatively heavy-weight
+ * synchronization primitives such as spinlocks. Only release-acquire
+ * type synchronization on the rings are needed.
+ *
+ * Timer memory management is the responsibility of the
+ * application. After library-level initialization has completed, no
+ * more dynamic memory is allocated by the htimer library. When
+ * installing timers on remote lcores, care must be taken by the
+ * application to avoid race conditions, in particular use-after-free
+ * (or use-after-recycle) issues of the rte_timer structure. A timer
+ * struct may only be deallocated and/or recycled if the application
+ * can guarantee that there are no cancel requests in flight.
+ *
+ * The htimer library is able to give a definitive answer to the
+ * question if a remote timer's had expired or not, at the time of
+ * cancellation.
+ *
+ * The htimer library uses TSC as the default time source. A different
+ * time source may be used, in which case the application must
+ * explicitly provide the time using rte_htimer_mgr_manage_time().
+ * This function may also be used even if TSC is the time source, in
+ * cases where the application for some other purpose already is in
+ * possession of the current TSC time, avoiding the overhead of the
+ * `rdtsc` instruction (or its equivalent on non-x86 ISAs).
+ *
+ * The htimer supports periodic and single-shot timers.
+ *
+ * The timer tick defines a quantum of time in the htimer library. The
+ * length of a tick (quantified in TSC) is left to the application to
+ * specify. The core HWT implementation allows for all 64 bits to be
+ * used.
+ *
+ * Very fine-grained ticks increase the HWT overhead (since more slots
+ * needs to be scanned). Long ticks will only allow for very
+ * course-grained timers, and in timer-heavy application may cause
+ * load spikes when time advances into a new tick.
+ *
+ * Seemingly reasonable timer tick length range in between 100 ns and
+ * 100 us (or maybe up to as high as 1 ms), depending on the
+ * application.
+ */
+
+#include <stdint.h>
+
+#include <rte_common.h>
+#include <rte_htimer.h>
+
+/**
+ * The timer has been added to the timer manager on the target lcore.
+ */
+#define RTE_HTIMER_MGR_ASYNC_RESULT_ADDED 1
+
+/**
+ * The timer cancellation request has completed, before the timer expired
+ * on the target lcore.
+ */
+#define RTE_HTIMER_MGR_ASYNC_RESULT_CANCELED 2
+
+/**
+ * The timer cancellation request was denied, since the timer was
+ * already marked as canceled.
+ */
+#define RTE_HTIMER_MGR_ASYNC_RESULT_ALREADY_CANCELED 3
+
+/**
+ * At the time of the cancellation request process on the target
+ * lcore, the timer had already expired.
+ */
+#define RTE_HTIMER_MGR_ASYNC_RESULT_EXPIRED 4
+
+typedef void (*rte_htimer_mgr_async_op_cb_t)(struct rte_htimer *timer,
+					     int result, void *cb_arg);
+
+/**
+ * Initialize the htimer library.
+ *
+ * Instantiates per-lcore (or per-registered non-EAL thread) timer
+ * wheels and other htimer library data structures, for all current
+ * and future threads.
+ *
+ * This function must be called prior to any other <rte_htimer.h> API
+ * call.
+ *
+ * This function may not be called if the htimer library is already
+ * initialized, but may be called multiple times, provided the library
+ * is deinitialized in between rte_htimer_mgr_init() calls.
+ *
+ * For applications not using TSC as the time source, the \c tsc_per_tick
+ * parameter will denote the number of such application time-source-units
+ * per tick.
+ *
+ * This function is not multi-thread safe.
+ *
+ * @param tsc_per_tick
+ *   The length (in TSC) of a HWT tick.
+ *
+ * @return
+ *   - 0: Success
+ *   - -ENOMEM: Unable to allocate memory needed to initialize timer
+ *      subsystem
+ *
+ * @see rte_htimer_mgr_deinit()
+ * @see rte_get_tsc_hz()
+ */
+
+__rte_experimental
+int
+rte_htimer_mgr_init(uint64_t tsc_per_tick);
+
+/**
+ * Deinitialize the htimer library.
+ *
+ * This function deallocates all dynamic memory used by the library,
+ * including HWT instances used by other threads than the caller.
+ *
+ * After this call has been made, no <rte_htimer.h> API call may be
+ * made, except rte_htimer_mgr_init().
+ *
+ * This function may not be called if the htimer library has never be
+ * initialized, or has been be deinitialized but not yet initialized
+ * again.
+ *
+ * This function is not multi-thread safe. In particular, no thread
+ * may call any <rte_htimer.h> functions (e.g., rte_htimer_mgr_manage())
+ * during (or after) the htimer library is deinitialized, except if it
+ * is initialized again.
+ *
+ * @see rte_htimer_mgr_init()
+ */
+
+__rte_experimental
+void
+rte_htimer_mgr_deinit(void);
+
+/**
+ * Adds a timer to the calling thread's timer wheel.
+ *
+ * This function schedules a timer on the calling thread's HWT.
+ *
+ * The \c timer_cb callback is called at a point when this thread
+ * calls rte_htimer_mgr_process(), rte_htimer_mgr_manage(), or
+ * rte_htimer_mgr_manage_time() and the expiration time has passed the
+ * current time (either as retrieved by rte_htimer_mgr_manage() or
+ * specified by the application in rte_htimer_mgr_manage_time().
+ *
+ * The HWT trackes times in units of \c ticks, which are likely more
+ * coarse-grained than the TSC resolution.
+ *
+ * The \c expiration_time is specified in units of TSC, and rounded up
+ * to the nearest tick. Thus, a timer with a certain expiration time
+ * (specified in TSC) maybe not expire even though this time
+ * (specified in TSC) was supplied in rte_timer_manage_time().  The
+ * maximum error is the length of one tick (not including any delays
+ * caused by infrequent manage calls).
+ *
+ * This timer may be canceled using rte_htimer_mgr_cancel() or
+ * rte_htimer_mgr_async_cancel().
+ *
+ * rte_htimer_mgr_add() is multi-thread safe, and may only be called
+ * from an EAL thread or a registered non-EAL thread.
+ *
+ * @param timer
+ *   The chunk of memory used for managing this timer. This memory
+ *   must not be read or written (or free'd) by the application until
+ *   this timer has expired, or any cancellation attempts have
+ *   completed.
+ * @param expiration_time
+ *   The expiration time (measured in TSC). For periodical timers,
+ *   this time represent the first expiration time.
+ * @param period
+ *   The time in between periodic timer expirations (measured in TSC).
+ *   Must be set to zero unless the RTE_HTIMER_FLAG_PERIODICAL flag is set,
+ *   in case it must be a positive integer.
+ * @param timer_cb
+ *   The timer callback to be called upon timer expiration.
+ * @param timer_cb_arg
+ *   A pointer which will be supplied back to the application in the
+ *   timer callback call.
+ * @param flags
+ *   RTE_HTIMER_FLAG_ABSOLUTE_TIME and/or RTE_HTIMER_FLAG_PERIODICAL.
+ */
+
+__rte_experimental
+void
+rte_htimer_mgr_add(struct rte_htimer *timer, uint64_t expiration_time,
+		   uint64_t period, rte_htimer_cb_t timer_cb,
+		   void *timer_cb_arg, uint32_t flags);
+
+/**
+ * Cancel a timer scheduled in the calling thread's timer wheel.
+ *
+ * This function cancel a timer scheduled on the calling thread's HWT.
+ *
+ * rte_htimer_mgr_cancel() may be called on a timer which has already
+ * (synchronously or asynchronously) been canceled, or may have expired.
+ * However, the \c rte_htimer struct pointed to by \c timer may not
+ * have been freed or recycled since.
+ *
+ * rte_htimer_mgr_cancel() may not be called for a timer that was
+ * never (or, not yet) added.
+ *
+ * A timer added using rte_htimer_mgr_async_add() may be not be
+ * canceled using this function until after the add operation has
+ * completed (i.e, the completion callback has been run).
+ *
+ * rte_htimer_mgr_cancel() is multi-thread safe, and may only be
+ * called from an EAL thread or a registered non-EAL thread.
+ *
+ * @param timer
+ *   The timer to be canceled.
+ * @return
+ *   - 0: Success
+ *   - -ETIME: Timer has expired, and thus could not be canceled.
+ *   - -ENOENT: Timer was already canceled.
+ */
+
+__rte_experimental
+int
+rte_htimer_mgr_cancel(struct rte_htimer *timer);
+
+/**
+ * Asynchronuosly add a timer to the specified lcore's timer wheel.
+ *
+ * This function is the equivalent of rte_htimer_mgr_add(), but allows
+ * the calling ("source") thread to scheduled a timer in a HWT other
+ * than it's own. The operation is asynchronous.
+ *
+ * The timer works the same as a timer added locally. Thus, the \c
+ * timer_cb callback is called by the target thread, and it may be
+ * canceled using rte_htimer_mgr_cancel().
+ *
+ * The source thread may be the same as the target thread.
+ *
+ * Only EAL threads or registered non-EAL thread may be targeted.
+ *
+ * A successful rte_htimer_mgr_async_add() call guarantees that the
+ * timer will be scheduled on the target lcore at some future time,
+ * provided the target thread calls either rte_htimer_mgr_process(),
+ * rte_htimer_mgr_manage(), and/or rte_htimer_mgr_manage_time().
+ *
+ * The \c async_cb callback is called on the source thread as a part
+ * of its rte_htimer_mgr_process(), rte_htimer_mgr_manage(), or
+ * rte_htimer_mgr_manage_time() call, when the asynchronous add
+ * operation has completed (i.e., the timer is scheduled in the target
+ * HWT).
+ *
+ * \c async_cb may be NULL, in which case no notification is given.
+ *
+ * An asynchronously added timer may be asynchronously canceled (i.e.,
+ * using rte_htimer_mgr_async_cancel()) at any point, by any thread,
+ * after the rte_htimer_mgr_async_add() call. A asynchronously added
+ * timer may be not be canceled using rte_htimer_mgr_cancel() until
+ * after the completion callback has been executed.
+ *
+ * rte_htimer_mgr_async_add() is multi-thread safe, and may only be called
+ * from an EAL thread or a registered non-EAL thread.
+ *
+ * @param timer
+ *   The chunk of memory used for managing this timer. This memory
+ *   must not be read or written (or free'd) by the application until
+ *   this timer has expired, or any cancellation attempts have
+ *   completed.
+ * @param target_lcore_id
+ *   The lcore id of the thread which HWT will be manage this timer.
+ * @param expiration_time
+ *   The expiration time (measured in TSC). For periodical timers,
+ *   this time represent the first expiration time.
+ * @param period
+ *   The time in between periodic timer expirations (measured in TSC).
+ *   Must be set to zero unless the RTE_HTIMER_FLAG_PERIODICAL flag is set,
+ *   in case it must be a positive integer.
+ * @param timer_cb
+ *   The timer callback to be called upon timer expiration.
+ * @param timer_cb_arg
+ *   A pointer which will be supplied back to the application in the
+ *   timer callback call.
+ * @param async_cb
+ *   The asynchronous operationg callback to be called when the
+ *   add operation is completed.
+ * @param async_cb_arg
+ *   A pointer which will be supplied back to the application in the
+ *   \c async_cb callback call.
+ * @param flags
+ *   RTE_HTIMER_FLAG_ABSOLUTE_TIME and/or RTE_HTIMER_FLAG_PERIODICAL.
+ * @return
+ *   - 0: Success
+ *   - -EBUSY: The maximum number of concurrently queued asynchronous
+ *      operations has been reached.
+ */
+__rte_experimental
+int
+rte_htimer_mgr_async_add(struct rte_htimer *timer,
+			 unsigned int target_lcore_id,
+			 uint64_t expiration_time, uint64_t period,
+			 rte_htimer_cb_t timer_cb, void *timer_cb_arg,
+			 uint32_t flags,
+			 rte_htimer_mgr_async_op_cb_t async_cb,
+			 void *async_cb_arg);
+
+/**
+ * Asynchronuosly cancel a timer in any thread's timer wheel.
+ *
+ * This function is the equivalent of rte_htimer_mgr_cancel(), but
+ * allows the calling ("source") thread to also cancel a timer in a
+ * HWT other than it's own. The operation is asynchronous.
+ *
+ * A thread may asynchronously cancel a timer scheduled on its own
+ * HWT.
+ *
+ * The \c async_cb callback is called on the source thread as a part
+ * of its rte_htimer_mgr_process(), rte_htimer_mgr_manage(), or
+ * rte_htimer_mgr_manage_time() call, when the asynchronous add
+ * operation has completed (i.e., the timer is scheduled in the target
+ * HWT).
+ *
+ * \c async_cb may be NULL, in which case no notification is given.
+ *
+ * A timer may be asynchronously canceled at any point, by any thread,
+ * after it has been either synchronously or asynchronously added.
+ *
+ * rte_htimer_mgr_async_cancel() is multi-thread safe, and may only be
+ * called from an EAL thread or a registered non-EAL thread.
+ *
+ * @param timer
+ *   The memory used for managing this timer. This memory must not be
+ *   read or written (or free'd) by the application until this timer
+ *   has expired, or any cancellation attempts have completed.
+ * @param async_cb
+ *   The asynchronous operationg callback to be called when the
+ *   add operation is completed.
+ * @param async_cb_arg
+ *   A pointer which will be supplied back to the application in the
+ *   \c async_cb callback call.
+ * @return
+ *   - 0: Success
+ *   - -EBUSY: The maximum number of concurrently queued asynchronous
+ *      operations has been reached.
+ */
+__rte_experimental
+int
+rte_htimer_mgr_async_cancel(struct rte_htimer *timer,
+			    rte_htimer_mgr_async_op_cb_t async_cb,
+			    void *async_cb_arg);
+
+/**
+ * Update HWT time and perform timer expiry and asyncronous operation
+ * processing.
+ *
+ * This function is the equivalent of retrieving the current TSC time,
+ * and calling rte_htimer_mgr_manage_time().
+ *
+ * rte_htimer_mgr_manage() is multi-thread safe, and may only be
+ * called from an EAL thread or a registered non-EAL thread.
+ */
+
+__rte_experimental
+void
+rte_htimer_mgr_manage(void);
+
+/**
+ * Progress HWT time, and perform timer expiry and asynchronous
+ * operation processing in the process.
+ *
+ * This function progress the calling thread's HWT up to the point
+ * specified by \c current_time, calling the callbacks of any expired
+ * timers.
+ *
+ * The time source must be a monotonic clock, and thus each new \c
+ * current_time must be equal or greater than the time supplied in the
+ * previous call.
+ *
+ * The timer precision for timers scheduled on a particular thread's
+ * HWT depends on that threads call frequency to this function.
+ *
+ * rte_htimer_mgr_manage_time() also performs asynchronous operation
+ * processing. See rte_htimer_mgr_process() for details.
+ *
+ * rte_htimer_mgr_manage_time() is multi-thread safe, and may only be
+ * called from an EAL thread or a registered non-EAL thread.
+ *
+ * @param current_time
+ *   The current time (usually in TSC).
+ */
+
+__rte_experimental
+void
+rte_htimer_mgr_manage_time(uint64_t current_time);
+
+/**
+ * Perform asynchronous operation processing.
+ *
+ * rte_htimer_mgr_process() serves pending asynchronous add or cancel
+ * requests, and produces the necessary responses. The timer callbacks
+ * of already-expired timers added are called.
+ *
+ * This function also processes asynchronous operation response
+ * messages received, and calls the asynchronous callbacks, if such
+ * was provided by the application.
+ *
+ * rte_htimer_mgr_process() is multi-thread safe, and may only be
+ * called from an EAL thread or a registered non-EAL thread.
+ */
+
+__rte_experimental
+void
+rte_htimer_mgr_process(void);
+
+/**
+ * Return the current local HWT time in TSC.
+ *
+ * This functino returns the most recent time provided by this thread,
+ * either via rte_htimer_mgr_manage_time(), or as sampled by
+ * rte_htimer_mgr_manage().
+ *
+ * The initial time, prior to any manage-calls, is 0.
+ *
+ * rte_htimer_mgr_current_time() is multi-thread safe, and may only be
+ * called from an EAL thread or a registered non-EAL thread.
+ */
+
+__rte_experimental
+uint64_t
+rte_htimer_mgr_current_time(void);
+
+/**
+ * Return the current local HWT time in ticks.
+ *
+ * This function returns the current time of the calling thread's HWT. The
+ * tick is the current time provided by the application (via
+ * rte_htimer_mgr_manage_time()), or as retrieved (using
+ * rte_timer_get_tsc_cycles() in rte_htimer_mgr_manage()), divided by the
+ * tick length (as provided in rte_htimer_mgr_init()).
+ *
+ * The initial time, prior to any manage-calls, is 0.
+ *
+ * rte_htimer_mgr_current_tick() is multi-thread safe, and may only be
+ * called from an EAL thread or a registered non-EAL thread.
+ */
+
+__rte_experimental
+uint64_t
+rte_htimer_mgr_current_tick(void);
+
+#endif
diff --git a/lib/htimer/rte_htimer_msg.h b/lib/htimer/rte_htimer_msg.h
new file mode 100644
index 0000000000..ceb106e263
--- /dev/null
+++ b/lib/htimer/rte_htimer_msg.h
@@ -0,0 +1,44 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#ifndef _RTE_HTIMER_MSG_
+#define _RTE_HTIMER_MSG_
+
+#include <rte_htimer.h>
+
+typedef void (*rte_htimer_msg_async_op_cb_t)(struct rte_htimer *timer,
+					     int result, void *cb_arg);
+
+typedef rte_htimer_msg_async_op_cb_t async_cb;
+
+enum rte_htimer_msg_type {
+	rte_htimer_msg_type_add_request,
+	rte_htimer_msg_type_add_response,
+	rte_htimer_msg_type_cancel_request,
+	rte_htimer_msg_type_cancel_response
+};
+
+struct rte_htimer_msg_request {
+	unsigned int source_lcore_id;
+};
+
+struct rte_htimer_msg_response {
+	int result;
+};
+
+struct rte_htimer_msg {
+	enum rte_htimer_msg_type msg_type;
+
+	struct rte_htimer *timer;
+
+	rte_htimer_msg_async_op_cb_t async_cb;
+	void *async_cb_arg;
+
+	union {
+		struct rte_htimer_msg_request request;
+		struct rte_htimer_msg_response response;
+	};
+};
+
+#endif
diff --git a/lib/htimer/rte_htimer_msg_ring.c b/lib/htimer/rte_htimer_msg_ring.c
new file mode 100644
index 0000000000..4019b7819a
--- /dev/null
+++ b/lib/htimer/rte_htimer_msg_ring.c
@@ -0,0 +1,18 @@
+#include "rte_htimer_msg_ring.h"
+
+struct rte_htimer_msg_ring *
+rte_htimer_msg_ring_create(const char *name, unsigned int count, int socket_id,
+			   unsigned int flags)
+{
+	struct rte_ring *ring =
+		rte_ring_create_elem(name, sizeof(struct rte_htimer_msg),
+				     count, socket_id, flags);
+
+	return (struct rte_htimer_msg_ring *)ring;
+}
+
+void
+rte_htimer_msg_ring_free(struct rte_htimer_msg_ring *msg_ring)
+{
+	rte_ring_free((struct rte_ring *)msg_ring);
+}
diff --git a/lib/htimer/rte_htimer_msg_ring.h b/lib/htimer/rte_htimer_msg_ring.h
new file mode 100644
index 0000000000..0e408991d1
--- /dev/null
+++ b/lib/htimer/rte_htimer_msg_ring.h
@@ -0,0 +1,49 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#ifndef _RTE_HTIMER_MSG_RING_
+#define _RTE_HTIMER_MSG_RING_
+
+#include <rte_ring.h>
+
+#include "rte_htimer_msg.h"
+
+struct rte_htimer_msg_ring {
+	struct rte_ring ring;
+};
+
+struct rte_htimer_msg_ring *
+rte_htimer_msg_ring_create(const char *name, unsigned int count, int socket_id,
+			   unsigned int flags);
+
+void
+rte_htimer_msg_ring_free(struct rte_htimer_msg_ring *msg_ring);
+
+static inline unsigned int
+rte_htimer_msg_ring_dequeue_burst(struct rte_htimer_msg_ring *msg_ring,
+				  struct rte_htimer_msg *msgs,
+				  unsigned int n)
+{
+	unsigned int dequeued;
+
+	dequeued = rte_ring_dequeue_burst_elem(&msg_ring->ring, msgs,
+					       sizeof(struct rte_htimer_msg),
+					       n, NULL);
+
+	return dequeued;
+}
+
+static inline unsigned int
+rte_htimer_msg_ring_enqueue(struct rte_htimer_msg_ring *msg_ring,
+			    struct rte_htimer_msg *msg)
+{
+	int rc;
+
+	rc = rte_ring_enqueue_elem(&msg_ring->ring, msg,
+				   sizeof(struct rte_htimer_msg));
+
+	return rc;
+}
+
+#endif
diff --git a/lib/htimer/rte_htw.c b/lib/htimer/rte_htw.c
new file mode 100644
index 0000000000..0104dced34
--- /dev/null
+++ b/lib/htimer/rte_htw.c
@@ -0,0 +1,437 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+/*
+ * This is an implementation of a hierarchical timer wheel based on
+ * Hashed and Hierarchical Timing Wheels: Data Structures
+ * for the Efficient Implementation of a Timer Facility by Varghese and
+ * Lauck.
+ *
+ * To improve efficiency when the slots are sparsely populate (i.e.,
+ * many ticks do not have any timers), each slot is represented by a
+ * bit in a separately-managed, per-wheel, bitset. This allows for
+ * very efficient scanning. The cost of managing this bitset is small.
+ */
+
+/* XXX: remove */
+#include <inttypes.h>
+
+#include <rte_bitset.h>
+#include <rte_branch_prediction.h>
+#include <rte_errno.h>
+#include <rte_malloc.h>
+
+#include "rte_htw.h"
+
+#define TICK_BITS 64
+
+#define WHEEL_BITS 8
+#define WHEEL_SLOTS (1U << WHEEL_BITS)
+#define WHEEL_LEVELS (TICK_BITS / WHEEL_BITS)
+
+struct wheel {
+	uint64_t wheel_time;
+	RTE_BITSET_DECLARE(used_slots, WHEEL_SLOTS);
+	struct rte_htimer_list slots[WHEEL_SLOTS];
+};
+
+struct rte_htw {
+	uint64_t current_time;
+
+	struct wheel wheels[WHEEL_LEVELS];
+
+	struct rte_htimer_list added;
+	struct rte_htimer_list expiring;
+
+	struct rte_htimer *running_timer;
+};
+
+static uint64_t
+time_to_wheel_time(uint64_t t, uint16_t level)
+{
+	return t >> (level * WHEEL_BITS);
+}
+
+static uint64_t
+wheel_time_to_time(uint64_t wheel_time, uint16_t level)
+{
+	return wheel_time << (level * WHEEL_BITS);
+}
+
+static void
+wheel_init(struct wheel *wheel)
+{
+	uint16_t i;
+
+	wheel->wheel_time = 0;
+
+	rte_bitset_init(wheel->used_slots, WHEEL_SLOTS);
+
+	for (i = 0; i < WHEEL_SLOTS; i++)
+		LIST_INIT(&wheel->slots[i]);
+}
+
+static uint64_t
+list_next_timeout(struct rte_htimer_list *timers)
+{
+	struct rte_htimer *timer;
+	uint64_t candidate = UINT64_MAX;
+
+	LIST_FOREACH(timer, timers, entry)
+		candidate = RTE_MIN(timer->expiration_time, candidate);
+
+	return candidate;
+}
+
+static uint16_t
+wheel_time_to_slot(uint64_t wheel_time)
+{
+	return wheel_time % WHEEL_SLOTS;
+}
+
+static uint64_t
+wheel_current_slot_time(struct wheel *wheel, uint16_t level)
+{
+	return wheel->wheel_time << (level * WHEEL_BITS);
+}
+
+static uint64_t
+wheel_next_timeout(struct wheel *wheel, uint16_t level, uint64_t upper_bound)
+{
+	uint16_t start_slot;
+	ssize_t slot;
+
+	start_slot = wheel_current_slot_time(wheel, level);
+
+	if (wheel_time_to_time(wheel->wheel_time, level) >= upper_bound)
+		return upper_bound;
+
+	RTE_BITSET_FOREACH_SET_WRAP(slot, wheel->used_slots, WHEEL_SLOTS,
+				    start_slot, WHEEL_SLOTS) {
+		struct rte_htimer_list *timers = &wheel->slots[slot];
+		uint64_t next_timeout;
+
+		next_timeout = list_next_timeout(timers);
+
+		if (next_timeout != UINT64_MAX)
+			return next_timeout;
+	}
+
+	return UINT64_MAX;
+}
+
+static uint16_t
+get_slot(uint64_t t, uint16_t level)
+{
+	uint64_t wheel_time;
+	uint16_t slot;
+
+	wheel_time = time_to_wheel_time(t, level);
+	slot = wheel_time_to_slot(wheel_time);
+
+	return slot;
+}
+
+struct rte_htw *
+rte_htw_create(void)
+{
+	struct rte_htw *htw;
+	uint16_t level;
+
+	RTE_BUILD_BUG_ON((TICK_BITS % WHEEL_BITS) != 0);
+	RTE_BUILD_BUG_ON(sizeof(uint16_t) * CHAR_BIT <= WHEEL_BITS);
+
+	htw = rte_malloc(NULL, sizeof(struct rte_htw), RTE_CACHE_LINE_SIZE);
+
+	if (htw == NULL) {
+		rte_errno = ENOMEM;
+		return NULL;
+	}
+
+	htw->current_time = 0;
+
+	LIST_INIT(&htw->added);
+	LIST_INIT(&htw->expiring);
+
+	for (level = 0; level < WHEEL_LEVELS; level++)
+		wheel_init(&htw->wheels[level]);
+
+	return htw;
+}
+
+void
+rte_htw_destroy(struct rte_htw *htw)
+{
+	rte_free(htw);
+}
+
+static uint16_t
+get_level(uint64_t remaining_time)
+{
+	int last_set = 64 - __builtin_clzll(remaining_time);
+
+	return (last_set - 1) / WHEEL_BITS;
+}
+
+static void
+mark_added(struct rte_htw *htw, struct rte_htimer *timer)
+{
+	timer->state = RTE_HTIMER_STATE_PENDING;
+	LIST_INSERT_HEAD(&htw->added, timer, entry);
+}
+
+void
+rte_htw_add(struct rte_htw *htw, struct rte_htimer *timer,
+	    uint64_t expiration_time, uint64_t period,
+	    rte_htimer_cb_t timer_cb, void *timer_cb_arg, uint32_t flags)
+{
+	RTE_ASSERT(rte_htimer_is_periodical(timer) ?
+		   period > 0 : period == 0);
+
+	if (flags & RTE_HTIMER_FLAG_ABSOLUTE_TIME)
+		timer->expiration_time = expiration_time;
+	else
+		timer->expiration_time = htw->current_time + expiration_time;
+
+	timer->period = period;
+	timer->flags = flags;
+	timer->cb = timer_cb;
+	timer->cb_arg = timer_cb_arg;
+
+	mark_added(htw, timer);
+}
+
+void
+rte_htw_cancel(struct rte_htw *htw, struct rte_htimer *timer)
+{
+	/*
+	 * One could consider clearing the relevant used_slots bit in
+	 * case this was the last entry in the wheel's slot
+	 * list. However, from a correctness point of view, a "false
+	 * positive" is not an issue. From a performance perspective,
+	 * checking the list head and clearing the bit is likely more
+	 * expensive than just deferring a minor cost to a future
+	 * rte_htw_manage() call.
+	 */
+
+	RTE_ASSERT(timer->state == RTE_HTIMER_STATE_PENDING ||
+		   timer->state == RTE_HTIMER_STATE_EXPIRED);
+
+	if (likely(timer->state == RTE_HTIMER_STATE_PENDING)) {
+		LIST_REMOVE(timer, entry);
+		timer->state = RTE_HTIMER_STATE_CANCELED;
+	} else if (timer == htw->running_timer) {
+		/* periodical timer being canceled by its own callback */
+		RTE_ASSERT(timer->flags & RTE_HTIMER_FLAG_PERIODICAL);
+
+		timer->state = RTE_HTIMER_STATE_CANCELED;
+
+		/* signals running timer canceled */
+		htw->running_timer = NULL;
+	}
+}
+
+static void
+mark_expiring(struct rte_htw *htw, struct rte_htimer *timer)
+{
+	LIST_INSERT_HEAD(&htw->expiring, timer, entry);
+}
+
+static void
+schedule_timer(struct rte_htw *htw, struct rte_htimer *timer)
+{
+	uint64_t remaining_time;
+	uint16_t level;
+	struct wheel *wheel;
+	uint16_t slot;
+	struct rte_htimer_list *slot_timers;
+
+	remaining_time = timer->expiration_time - htw->current_time;
+
+	level = get_level(remaining_time);
+
+	wheel = &htw->wheels[level];
+
+	slot = get_slot(timer->expiration_time, level);
+
+	slot_timers = &htw->wheels[level].slots[slot];
+
+	LIST_INSERT_HEAD(slot_timers, timer, entry);
+
+	rte_bitset_set(wheel->used_slots, slot);
+}
+
+static void
+process_added(struct rte_htw *htw)
+{
+	struct rte_htimer *timer;
+
+	while ((timer = LIST_FIRST(&htw->added)) != NULL) {
+		LIST_REMOVE(timer, entry);
+
+		if (timer->expiration_time > htw->current_time)
+			schedule_timer(htw, timer);
+		else
+			mark_expiring(htw, timer);
+	}
+}
+
+static void
+process_expiring(struct rte_htw *htw)
+{
+	struct rte_htimer *timer;
+
+	while ((timer = LIST_FIRST(&htw->expiring)) != NULL) {
+		bool is_periodical;
+		bool running_timer_canceled;
+
+		/*
+		 * The timer struct may cannot be safely accessed
+		 * after the callback has been called (except for
+		 * non-canceled periodical timers), since the callback
+		 * may have free'd (or reused) the memory.
+		 */
+
+		LIST_REMOVE(timer, entry);
+
+		is_periodical = timer->flags & RTE_HTIMER_FLAG_PERIODICAL;
+
+		timer->state = RTE_HTIMER_STATE_EXPIRED;
+
+		htw->running_timer = timer;
+
+		timer->cb(timer, timer->cb_arg);
+
+		running_timer_canceled = htw->running_timer == NULL;
+
+		htw->running_timer = NULL;
+
+		if (is_periodical && !running_timer_canceled) {
+			timer->expiration_time += timer->period;
+			mark_added(htw, timer);
+		}
+	}
+}
+
+uint64_t
+rte_htw_current_time(struct rte_htw *htw)
+{
+	return htw->current_time;
+}
+
+uint64_t
+rte_htw_next_timeout(struct rte_htw *htw, uint64_t upper_bound)
+{
+	uint16_t level;
+
+	/* scheduling timeouts will sort them in temporal order */
+	process_added(htw);
+
+	if (!LIST_EMPTY(&htw->expiring))
+		return 0;
+
+	for (level = 0; level < WHEEL_LEVELS; level++) {
+		uint64_t wheel_timeout;
+
+		wheel_timeout = wheel_next_timeout(&htw->wheels[level],
+						   level, upper_bound);
+		if (wheel_timeout != UINT64_MAX)
+			return RTE_MIN(wheel_timeout, upper_bound);
+	}
+
+	return upper_bound;
+}
+
+static __rte_always_inline void
+process_slot(struct rte_htw *htw, uint16_t level, struct wheel *wheel,
+	     uint16_t slot)
+{
+	struct rte_htimer_list *slot_timers;
+	struct rte_htimer *timer;
+
+	slot_timers = &wheel->slots[slot];
+
+	rte_bitset_clear(wheel->used_slots, slot);
+
+	while ((timer = LIST_FIRST(slot_timers)) != NULL) {
+		LIST_REMOVE(timer, entry);
+
+		if (level == 0 || timer->expiration_time <= htw->current_time)
+			mark_expiring(htw, timer);
+		else
+			schedule_timer(htw, timer);
+	}
+}
+
+static __rte_always_inline void
+process_slots(struct rte_htw *htw, uint16_t level, struct wheel *wheel,
+	      uint16_t start_slot, uint16_t num_slots)
+{
+	ssize_t slot;
+
+	RTE_BITSET_FOREACH_SET_WRAP(slot, wheel->used_slots, WHEEL_SLOTS,
+				    start_slot, num_slots)
+		process_slot(htw, level, wheel, slot);
+}
+
+static void
+advance(struct rte_htw *htw)
+{
+	uint16_t level;
+
+	for (level = 0; level < WHEEL_LEVELS; level++) {
+		struct wheel *wheel = &htw->wheels[level];
+		uint64_t new_wheel_time;
+		uint16_t start_slot;
+		uint16_t num_slots;
+
+		new_wheel_time = time_to_wheel_time(htw->current_time, level);
+
+		if (new_wheel_time == wheel->wheel_time)
+			break;
+
+		start_slot = wheel_time_to_slot(wheel->wheel_time + 1);
+		num_slots = RTE_MIN(new_wheel_time - wheel->wheel_time,
+				    WHEEL_SLOTS);
+
+		wheel->wheel_time = new_wheel_time;
+
+		process_slots(htw, level, wheel, start_slot, num_slots);
+	}
+}
+
+void
+rte_htw_manage(struct rte_htw *htw, uint64_t new_time)
+{
+	RTE_VERIFY(new_time >= htw->current_time);
+
+	/*
+	 * Scheduling added timers, core timer wheeling processing and
+	 * expiry callback execution is kept as separate stages, to
+	 * avoid having the core wheel traversal code to deal with a
+	 * situation where a timeout callbacks re-adding the timer.
+	 * This split also results in seemingly reasonable semantics
+	 * in regards to the execution of the callbacks of
+	 * already-expired timeouts (e.g., with time 0) being added in
+	 * a timeout callback. Instead of creating an end-less loop,
+	 * with rte_htw_manage() never returning, it defers the
+	 * execution of the timer until the next rte_htw_manage()
+	 * call.
+	 */
+
+	process_added(htw);
+
+	htw->current_time = new_time;
+
+	advance(htw);
+
+	process_expiring(htw);
+}
+
+void
+rte_htw_process(struct rte_htw *htw)
+{
+	process_added(htw);
+	process_expiring(htw);
+}
diff --git a/lib/htimer/rte_htw.h b/lib/htimer/rte_htw.h
new file mode 100644
index 0000000000..c93358bb13
--- /dev/null
+++ b/lib/htimer/rte_htw.h
@@ -0,0 +1,49 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2023 Ericsson AB
+ */
+
+#ifndef _RTE_HTW_H_
+#define _RTE_HTW_H_
+
+#include <stdint.h>
+#include <sys/queue.h>
+
+#include <rte_htimer.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct rte_htw;
+
+struct rte_htw *
+rte_htw_create(void);
+
+void
+rte_htw_destroy(struct rte_htw *htw);
+
+void
+rte_htw_add(struct rte_htw *htw, struct rte_htimer *timer,
+	    uint64_t expiration_time, uint64_t period,
+	    rte_htimer_cb_t cb, void *cb_arg, uint32_t flags);
+
+void
+rte_htw_cancel(struct rte_htw *htw, struct rte_htimer *timer);
+
+uint64_t
+rte_htw_current_time(struct rte_htw *htw);
+
+uint64_t
+rte_htw_next_timeout(struct rte_htw *htw, uint64_t upper_bound);
+
+void
+rte_htw_manage(struct rte_htw *htw, uint64_t new_time);
+
+void
+rte_htw_process(struct rte_htw *htw);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _RTE_HTW_H_ */
diff --git a/lib/htimer/version.map b/lib/htimer/version.map
new file mode 100644
index 0000000000..0e71dc7d57
--- /dev/null
+++ b/lib/htimer/version.map
@@ -0,0 +1,17 @@
+EXPERIMENTAL {
+	global:
+
+	rte_htimer_mgr_init;
+	rte_htimer_mgr_deinit;
+	rte_htimer_mgr_add;
+	rte_htimer_mgr_cancel;
+	rte_htimer_mgr_async_add;
+	rte_htimer_mgr_async_cancel;
+	rte_htimer_mgr_manage;
+	rte_htimer_mgr_manage_time;
+	rte_htimer_mgr_process;
+	rte_htimer_mgr_current_time;
+	rte_htimer_mgr_current_tick;
+
+        local: *;
+};
diff --git a/lib/meson.build b/lib/meson.build
index 2bc0932ad5..c7c0e42ae8 100644
--- a/lib/meson.build
+++ b/lib/meson.build
@@ -37,6 +37,7 @@ libraries = [
         'gpudev',
         'gro',
         'gso',
+        'htimer',
         'ip_frag',
         'jobstats',
         'kni',
-- 
2.34.1


  parent reply	other threads:[~2023-02-28  9:45 UTC|newest]

Thread overview: 31+ messages / expand[flat|nested]  mbox.gz  Atom feed  top
2023-02-28  9:39 [RFC 0/2] Add " Mattias Rönnblom
2023-02-28  9:39 ` [RFC 1/2] eal: add bitset type Mattias Rönnblom
2023-02-28 18:46   ` Tyler Retzlaff
2023-03-02  6:31     ` Mattias Rönnblom
2023-03-02 20:39       ` Tyler Retzlaff
2023-02-28  9:39 ` Mattias Rönnblom [this message]
2023-03-05 17:25   ` [RFC 2/2] eal: add high-performance timer facility Stephen Hemminger
2023-03-09 15:20     ` Mattias Rönnblom
2023-02-28 16:01 ` [RFC 0/2] Add " Morten Brørup
2023-03-01 11:18   ` Mattias Rönnblom
2023-03-01 13:31     ` Morten Brørup
2023-03-01 15:50       ` Mattias Rönnblom
2023-03-01 17:06         ` Morten Brørup
2023-03-15 17:03 ` [RFC v2 " Mattias Rönnblom
2023-03-15 17:03   ` [RFC v2 1/2] eal: add bitset type Mattias Rönnblom
2023-03-15 17:20     ` Stephen Hemminger
2023-03-15 18:27       ` Mattias Rönnblom
2023-03-15 17:03   ` [RFC v2 2/2] eal: add high-performance timer facility Mattias Rönnblom
2023-03-16  3:55     ` Tyler Retzlaff
2023-03-17  1:58     ` Stephen Hemminger
2023-03-22 12:18     ` Morten Brørup
2023-04-03 12:04       ` Mattias Rönnblom
2023-04-04  7:32         ` Morten Brørup
2023-03-24 16:00     ` Morten Brørup
2023-07-06 22:41     ` Stephen Hemminger
2023-07-12  8:58       ` Mattias Rönnblom
2024-10-03 18:36   ` [RFC v2 0/2] Add " Stephen Hemminger
2024-10-03 21:32     ` Morten Brørup
2024-10-06 13:02       ` Mattias Rönnblom
2024-10-06 13:43         ` Morten Brørup
2024-10-06 14:43           ` Mattias Rönnblom

Reply instructions:

You may reply publicly to this message via plain-text email
using any one of the following methods:

* Save the following mbox file, import it into your mail client,
  and reply-to-all from there: mbox

  Avoid top-posting and favor interleaved quoting:
  https://en.wikipedia.org/wiki/Posting_style#Interleaved_style

* Reply using the --to, --cc, and --in-reply-to
  switches of git-send-email(1):

  git send-email \
    --in-reply-to=20230228093916.87206-3-mattias.ronnblom@ericsson.com \
    --to=mattias.ronnblom@ericsson.com \
    --cc=david.marchand@redhat.com \
    --cc=dev@dpdk.org \
    --cc=erik.g.carrillo@intel.com \
    --cc=maria.lingemark@ericsson.com \
    --cc=stefan.sundkvist@ericsson.com \
    /path/to/YOUR_REPLY

  https://kernel.org/pub/software/scm/git/docs/git-send-email.html

* If your mail client supports setting the In-Reply-To header
  via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).