From: "Ananyev, Konstantin" <konstantin.ananyev@intel.com>
To: Neil Horman <nhorman@tuxdriver.com>, "dev@dpdk.org" <dev@dpdk.org>
Subject: Re: [dpdk-dev] [PATCHv3] librte_acl make it build/work for 'default' target
Date: Mon, 25 Aug 2014 16:30:05 +0000 [thread overview]
Message-ID: <2601191342CEEE43887BDE71AB9772582135D369@IRSMSX105.ger.corp.intel.com> (raw)
In-Reply-To: <1408652100-29217-1-git-send-email-nhorman@tuxdriver.com>
Hi Neil,
> -----Original Message-----
> From: Neil Horman [mailto:nhorman@tuxdriver.com]
> Sent: Thursday, August 21, 2014 9:15 PM
> To: dev@dpdk.org
> Cc: Ananyev, Konstantin; thomas.monjalon@6wind.com; Neil Horman
> Subject: [PATCHv3] librte_acl make it build/work for 'default' target
>
> Make ACL library to build/work on 'default' architecture:
> - make rte_acl_classify_scalar really scalar
> (make sure it wouldn't use sse4 instrincts through resolve_priority()).
> - Provide two versions of rte_acl_classify code path:
> rte_acl_classify_sse() - could be build and used only on systems with sse4.2
> and upper, return -ENOTSUP on lower arch.
> rte_acl_classify_scalar() - a slower version, but could be build and used
> on all systems.
> - keep common code shared between these two codepaths.
>
> v2 chages:
> run-time selection of most appropriate code-path for given ISA.
> By default the highest supprted one is selected.
> User can still override that selection by manually assigning new value to
> the global function pointer rte_acl_default_classify.
> rte_acl_classify() becomes a macro calling whatever rte_acl_default_classify
> points to.
>
I see you decided not to wait for me and fix everything by yourself :)
> V3 Changes
> Updated classify pointer to be a function so as to better preserve ABI
As I said in my previous mail it generates extra jump...
Though from numbers I got the performance impact is negligible: < 1%.
So I suppose, I don't have a good enough reason to object :)
Though I still think we better keep rte_acl_classify_scalar() publically available (same as we do for rte acl_classify_sse()):
First of all keep rte_acl_classify_scalar() is already part of our public API.
Also, as I remember, one of the customers explicitly asked for scalar version and they planned to call it directly.
Plus using rte_acl_select_classify() to always switch between implementations is not always handy:
- it is global, which means that we can't simultaneously use classify_scalar() and classify_sse() for 2 different ACL contexts.
- to properly support such switching we then will need to support something like (see app/test/test_acl.c below):
old_alg = rte_acl_get_classify();
rte_acl_select_classify(new_alg);
...
rte_acl_select_classify(old_alg);
> REmoved macro definitions for match check functions to make them static inline
More comments inlined below.
Thanks
Konstantin
>
> Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
> ---
> app/test-acl/main.c | 13 +-
> app/test/test_acl.c | 12 +-
> lib/librte_acl/Makefile | 5 +-
> lib/librte_acl/acl_bld.c | 5 +-
> lib/librte_acl/acl_match_check.h | 83 ++++
> lib/librte_acl/acl_run.c | 944 ---------------------------------------
> lib/librte_acl/acl_run.h | 220 +++++++++
> lib/librte_acl/acl_run_scalar.c | 198 ++++++++
> lib/librte_acl/acl_run_sse.c | 627 ++++++++++++++++++++++++++
> lib/librte_acl/rte_acl.c | 46 ++
> lib/librte_acl/rte_acl.h | 26 +-
> 11 files changed, 1216 insertions(+), 963 deletions(-)
> create mode 100644 lib/librte_acl/acl_match_check.h
> delete mode 100644 lib/librte_acl/acl_run.c
> create mode 100644 lib/librte_acl/acl_run.h
> create mode 100644 lib/librte_acl/acl_run_scalar.c
> create mode 100644 lib/librte_acl/acl_run_sse.c
>
> diff --git a/app/test-acl/main.c b/app/test-acl/main.c
> index d654409..a77f47d 100644
> --- a/app/test-acl/main.c
> +++ b/app/test-acl/main.c
> @@ -787,6 +787,10 @@ acx_init(void)
> /* perform build. */
> ret = rte_acl_build(config.acx, &cfg);
>
> + /* setup default rte_acl_classify */
> + if (config.scalar)
> + rte_acl_select_classify(ACL_CLASSIFY_SCALAR);
> +
> dump_verbose(DUMP_NONE, stdout,
> "rte_acl_build(%u) finished with %d\n",
> config.bld_categories, ret);
> @@ -815,13 +819,8 @@ search_ip5tuples_once(uint32_t categories, uint32_t step, int scalar)
> v += config.trace_sz;
> }
>
> - if (scalar != 0)
> - ret = rte_acl_classify_scalar(config.acx, data,
> - results, n, categories);
> -
> - else
> - ret = rte_acl_classify(config.acx, data,
> - results, n, categories);
> + ret = rte_acl_classify(config.acx, data, results,
> + n, categories);
>
> if (ret != 0)
> rte_exit(ret, "classify for ipv%c_5tuples returns %d\n",
> diff --git a/app/test/test_acl.c b/app/test/test_acl.c
> index 869f6d3..2fcef6e 100644
> --- a/app/test/test_acl.c
> +++ b/app/test/test_acl.c
> @@ -148,7 +148,8 @@ test_classify_run(struct rte_acl_ctx *acx)
> }
>
> /* make a quick check for scalar */
> - ret = rte_acl_classify_scalar(acx, data, results,
> + rte_acl_select_classify(ACL_CLASSIFY_SCALAR);
> + ret = rte_acl_classify(acx, data, results,
> RTE_DIM(acl_test_data), RTE_ACL_MAX_CATEGORIES);
As I said above, that doesn't seem correct: we set rte_acl_default_classify = rte_acl_classify_scalar and never restore it back to the original value.
To support it properly, we need to:
old_alg = rte_acl_get_classify();
rte_acl_select_classify(new_alg);
...
rte_acl_select_classify(old_alg);
Make all this just to keep UT valid seems like a big hassle to me.
So I said above - probably better just leave it to call rte_acl_classify_scalar() directly.
> if (ret != 0) {
> printf("Line %i: SSE classify failed!\n", __LINE__);
> @@ -362,7 +363,8 @@ test_invalid_layout(void)
> }
>
> /* classify tuples (scalar) */
> - ret = rte_acl_classify_scalar(acx, data, results,
> + rte_acl_select_classify(ACL_CLASSIFY_SCALAR);
> + ret = rte_acl_classify(acx, data, results,
> RTE_DIM(results), 1);
> if (ret != 0) {
> printf("Line %i: Scalar classify failed!\n", __LINE__);
> @@ -850,7 +852,8 @@ test_invalid_parameters(void)
> /* scalar classify test */
>
> /* cover zero categories in classify (should not fail) */
> - result = rte_acl_classify_scalar(acx, NULL, NULL, 0, 0);
> + rte_acl_select_classify(ACL_CLASSIFY_SCALAR);
> + result = rte_acl_classify(acx, NULL, NULL, 0, 0);
> if (result != 0) {
> printf("Line %i: Scalar classify with zero categories "
> "failed!\n", __LINE__);
> @@ -859,7 +862,8 @@ test_invalid_parameters(void)
> }
>
> /* cover invalid but positive categories in classify */
> - result = rte_acl_classify_scalar(acx, NULL, NULL, 0, 3);
> + rte_acl_select_classify(ACL_CLASSIFY_SCALAR);
> + result = rte_acl_classify(acx, NULL, NULL, 0, 3);
> if (result == 0) {
> printf("Line %i: Scalar classify with 3 categories "
> "should have failed!\n", __LINE__);
> diff --git a/lib/librte_acl/Makefile b/lib/librte_acl/Makefile
> index 4fe4593..65e566d 100644
> --- a/lib/librte_acl/Makefile
> +++ b/lib/librte_acl/Makefile
> @@ -43,7 +43,10 @@ SRCS-$(CONFIG_RTE_LIBRTE_ACL) += tb_mem.c
> SRCS-$(CONFIG_RTE_LIBRTE_ACL) += rte_acl.c
> SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_bld.c
> SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_gen.c
> -SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run.c
> +SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run_scalar.c
> +SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run_sse.c
> +
> +CFLAGS_acl_run_sse.o += -msse4.1
>
> # install this header file
> SYMLINK-$(CONFIG_RTE_LIBRTE_ACL)-include := rte_acl_osdep.h
> diff --git a/lib/librte_acl/acl_bld.c b/lib/librte_acl/acl_bld.c
> index 873447b..09d58ea 100644
> --- a/lib/librte_acl/acl_bld.c
> +++ b/lib/librte_acl/acl_bld.c
> @@ -31,7 +31,6 @@
> * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> */
>
> -#include <nmmintrin.h>
> #include <rte_acl.h>
> #include "tb_mem.h"
> #include "acl.h"
> @@ -1480,8 +1479,8 @@ acl_calc_wildness(struct rte_acl_build_rule *head,
>
> switch (rule->config->defs[n].type) {
> case RTE_ACL_FIELD_TYPE_BITMASK:
> - wild = (size -
> - _mm_popcnt_u32(fld->mask_range.u8)) /
> + wild = (size - __builtin_popcount(
> + fld->mask_range.u8)) /
> size;
> break;
>
> diff --git a/lib/librte_acl/acl_match_check.h b/lib/librte_acl/acl_match_check.h
> new file mode 100644
> index 0000000..4dc1982
> --- /dev/null
> +++ b/lib/librte_acl/acl_match_check.h
As a nit: we probably don't need a special header just for one function and can place it inside acl_run.h.
> @@ -0,0 +1,83 @@
> +/*-
> + * BSD LICENSE
> + *
> + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
> + * All rights reserved.
> + *
> + * Redistribution and use in source and binary forms, with or without
> + * modification, are permitted provided that the following conditions
> + * are met:
> + *
> + * * Redistributions of source code must retain the above copyright
> + * notice, this list of conditions and the following disclaimer.
> + * * Redistributions in binary form must reproduce the above copyright
> + * notice, this list of conditions and the following disclaimer in
> + * the documentation and/or other materials provided with the
> + * distribution.
> + * * Neither the name of Intel Corporation nor the names of its
> + * contributors may be used to endorse or promote products derived
> + * from this software without specific prior written permission.
> + *
> + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
> + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
> + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
> + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
> + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
> + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
> + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
> + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
> + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
> + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
> + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> + */
> +
> +#ifndef _ACL_MATCH_CHECK_H_
> +#define _ACL_MATCH_CHECK_H_
> +
> +/*
> + * Detect matches. If a match node transition is found, then this trie
> + * traversal is complete and fill the slot with the next trie
> + * to be processed.
> + */
> +static inline uint64_t
> +acl_match_check(uint64_t transition, int slot,
> + const struct rte_acl_ctx *ctx, struct parms *parms,
> + struct acl_flow_data *flows, void (*resolve_priority)(
> + uint64_t transition, int n, const struct rte_acl_ctx *ctx,
> + struct parms *parms, const struct rte_acl_match_results *p,
> + uint32_t categories))
Ugh, that's really hard to read.
Can we create a typedef for resolve_priority function type:
typedef void (*resolve_priority_t)(uint64_t, int,
const struct rte_acl_ctx *ctx, struct parms *,
const struct rte_acl_match_results *, uint32_t);
And use it here?
> +{
> + const struct rte_acl_match_results *p;
> +
> + p = (const struct rte_acl_match_results *)
> + (flows->trans + ctx->match_index);
> +
> + if (transition & RTE_ACL_NODE_MATCH) {
> +
> + /* Remove flags from index and decrement active traversals */
> + transition &= RTE_ACL_NODE_INDEX;
> + flows->started--;
> +
> + /* Resolve priorities for this trie and running results */
> + if (flows->categories == 1)
> + resolve_single_priority(transition, slot, ctx,
> + parms, p);
> + else
> + resolve_priority(transition, slot, ctx, parms,
> + p, flows->categories);
> +
> + /* Count down completed tries for this search request */
> + parms[slot].cmplt->count--;
> +
> + /* Fill the slot with the next trie or idle trie */
> + transition = acl_start_next_trie(flows, parms, slot, ctx);
> +
> + } else if (transition == ctx->idle) {
> + /* reset indirection table for idle slots */
> + parms[slot].data_index = idle;
> + }
> +
> + return transition;
> +}
> +
> +#endif
> diff --git a/lib/librte_acl/acl_run.c b/lib/librte_acl/acl_run.c
> deleted file mode 100644
> index e3d9fc1..0000000
> --- a/lib/librte_acl/acl_run.c
> +++ /dev/null
> @@ -1,944 +0,0 @@
> -/*-
> - * BSD LICENSE
> - *
> - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
> - * All rights reserved.
> - *
> - * Redistribution and use in source and binary forms, with or without
> - * modification, are permitted provided that the following conditions
> - * are met:
> - *
> - * * Redistributions of source code must retain the above copyright
> - * notice, this list of conditions and the following disclaimer.
> - * * Redistributions in binary form must reproduce the above copyright
> - * notice, this list of conditions and the following disclaimer in
> - * the documentation and/or other materials provided with the
> - * distribution.
> - * * Neither the name of Intel Corporation nor the names of its
> - * contributors may be used to endorse or promote products derived
> - * from this software without specific prior written permission.
> - *
> - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
> - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
> - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
> - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
> - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
> - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
> - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
> - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
> - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
> - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
> - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> - */
> -
> -#include <rte_acl.h>
> -#include "acl_vect.h"
> -#include "acl.h"
> -
> -#define MAX_SEARCHES_SSE8 8
> -#define MAX_SEARCHES_SSE4 4
> -#define MAX_SEARCHES_SSE2 2
> -#define MAX_SEARCHES_SCALAR 2
> -
> -#define GET_NEXT_4BYTES(prm, idx) \
> - (*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++)))
> -
> -
> -#define RTE_ACL_NODE_INDEX ((uint32_t)~RTE_ACL_NODE_TYPE)
> -
> -#define SCALAR_QRANGE_MULT 0x01010101
> -#define SCALAR_QRANGE_MASK 0x7f7f7f7f
> -#define SCALAR_QRANGE_MIN 0x80808080
> -
> -enum {
> - SHUFFLE32_SLOT1 = 0xe5,
> - SHUFFLE32_SLOT2 = 0xe6,
> - SHUFFLE32_SLOT3 = 0xe7,
> - SHUFFLE32_SWAP64 = 0x4e,
> -};
> -
> -/*
> - * Structure to manage N parallel trie traversals.
> - * The runtime trie traversal routines can process 8, 4, or 2 tries
> - * in parallel. Each packet may require multiple trie traversals (up to 4).
> - * This structure is used to fill the slots (0 to n-1) for parallel processing
> - * with the trie traversals needed for each packet.
> - */
> -struct acl_flow_data {
> - uint32_t num_packets;
> - /* number of packets processed */
> - uint32_t started;
> - /* number of trie traversals in progress */
> - uint32_t trie;
> - /* current trie index (0 to N-1) */
> - uint32_t cmplt_size;
> - uint32_t total_packets;
> - uint32_t categories;
> - /* number of result categories per packet. */
> - /* maximum number of packets to process */
> - const uint64_t *trans;
> - const uint8_t **data;
> - uint32_t *results;
> - struct completion *last_cmplt;
> - struct completion *cmplt_array;
> -};
> -
> -/*
> - * Structure to maintain running results for
> - * a single packet (up to 4 tries).
> - */
> -struct completion {
> - uint32_t *results; /* running results. */
> - int32_t priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */
> - uint32_t count; /* num of remaining tries */
> - /* true for allocated struct */
> -} __attribute__((aligned(XMM_SIZE)));
> -
> -/*
> - * One parms structure for each slot in the search engine.
> - */
> -struct parms {
> - const uint8_t *data;
> - /* input data for this packet */
> - const uint32_t *data_index;
> - /* data indirection for this trie */
> - struct completion *cmplt;
> - /* completion data for this packet */
> -};
> -
> -/*
> - * Define an global idle node for unused engine slots
> - */
> -static const uint32_t idle[UINT8_MAX + 1];
> -
> -static const rte_xmm_t mm_type_quad_range = {
> - .u32 = {
> - RTE_ACL_NODE_QRANGE,
> - RTE_ACL_NODE_QRANGE,
> - RTE_ACL_NODE_QRANGE,
> - RTE_ACL_NODE_QRANGE,
> - },
> -};
> -
> -static const rte_xmm_t mm_type_quad_range64 = {
> - .u32 = {
> - RTE_ACL_NODE_QRANGE,
> - RTE_ACL_NODE_QRANGE,
> - 0,
> - 0,
> - },
> -};
> -
> -static const rte_xmm_t mm_shuffle_input = {
> - .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
> -};
> -
> -static const rte_xmm_t mm_shuffle_input64 = {
> - .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
> -};
> -
> -static const rte_xmm_t mm_ones_16 = {
> - .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
> -};
> -
> -static const rte_xmm_t mm_bytes = {
> - .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
> -};
> -
> -static const rte_xmm_t mm_bytes64 = {
> - .u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
> -};
> -
> -static const rte_xmm_t mm_match_mask = {
> - .u32 = {
> - RTE_ACL_NODE_MATCH,
> - RTE_ACL_NODE_MATCH,
> - RTE_ACL_NODE_MATCH,
> - RTE_ACL_NODE_MATCH,
> - },
> -};
> -
> -static const rte_xmm_t mm_match_mask64 = {
> - .u32 = {
> - RTE_ACL_NODE_MATCH,
> - 0,
> - RTE_ACL_NODE_MATCH,
> - 0,
> - },
> -};
> -
> -static const rte_xmm_t mm_index_mask = {
> - .u32 = {
> - RTE_ACL_NODE_INDEX,
> - RTE_ACL_NODE_INDEX,
> - RTE_ACL_NODE_INDEX,
> - RTE_ACL_NODE_INDEX,
> - },
> -};
> -
> -static const rte_xmm_t mm_index_mask64 = {
> - .u32 = {
> - RTE_ACL_NODE_INDEX,
> - RTE_ACL_NODE_INDEX,
> - 0,
> - 0,
> - },
> -};
> -
> -/*
> - * Allocate a completion structure to manage the tries for a packet.
> - */
> -static inline struct completion *
> -alloc_completion(struct completion *p, uint32_t size, uint32_t tries,
> - uint32_t *results)
> -{
> - uint32_t n;
> -
> - for (n = 0; n < size; n++) {
> -
> - if (p[n].count == 0) {
> -
> - /* mark as allocated and set number of tries. */
> - p[n].count = tries;
> - p[n].results = results;
> - return &(p[n]);
> - }
> - }
> -
> - /* should never get here */
> - return NULL;
> -}
> -
> -/*
> - * Resolve priority for a single result trie.
> - */
> -static inline void
> -resolve_single_priority(uint64_t transition, int n,
> - const struct rte_acl_ctx *ctx, struct parms *parms,
> - const struct rte_acl_match_results *p)
> -{
> - if (parms[n].cmplt->count == ctx->num_tries ||
> - parms[n].cmplt->priority[0] <=
> - p[transition].priority[0]) {
> -
> - parms[n].cmplt->priority[0] = p[transition].priority[0];
> - parms[n].cmplt->results[0] = p[transition].results[0];
> - }
> -
> - parms[n].cmplt->count--;
> -}
> -
> -/*
> - * Resolve priority for multiple results. This consists comparing
> - * the priority of the current traversal with the running set of
> - * results for the packet. For each result, keep a running array of
> - * the result (rule number) and its priority for each category.
> - */
> -static inline void
> -resolve_priority(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
> - struct parms *parms, const struct rte_acl_match_results *p,
> - uint32_t categories)
> -{
> - uint32_t x;
> - xmm_t results, priority, results1, priority1, selector;
> - xmm_t *saved_results, *saved_priority;
> -
> - for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
> -
> - saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
> - saved_priority =
> - (xmm_t *)(&parms[n].cmplt->priority[x]);
> -
> - /* get results and priorities for completed trie */
> - results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
> - priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
> -
> - /* if this is not the first completed trie */
> - if (parms[n].cmplt->count != ctx->num_tries) {
> -
> - /* get running best results and their priorities */
> - results1 = MM_LOADU(saved_results);
> - priority1 = MM_LOADU(saved_priority);
> -
> - /* select results that are highest priority */
> - selector = MM_CMPGT32(priority1, priority);
> - results = MM_BLENDV8(results, results1, selector);
> - priority = MM_BLENDV8(priority, priority1, selector);
> - }
> -
> - /* save running best results and their priorities */
> - MM_STOREU(saved_results, results);
> - MM_STOREU(saved_priority, priority);
> - }
> -
> - /* Count down completed tries for this search request */
> - parms[n].cmplt->count--;
> -}
> -
> -/*
> - * Routine to fill a slot in the parallel trie traversal array (parms) from
> - * the list of packets (flows).
> - */
> -static inline uint64_t
> -acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
> - const struct rte_acl_ctx *ctx)
> -{
> - uint64_t transition;
> -
> - /* if there are any more packets to process */
> - if (flows->num_packets < flows->total_packets) {
> - parms[n].data = flows->data[flows->num_packets];
> - parms[n].data_index = ctx->trie[flows->trie].data_index;
> -
> - /* if this is the first trie for this packet */
> - if (flows->trie == 0) {
> - flows->last_cmplt = alloc_completion(flows->cmplt_array,
> - flows->cmplt_size, ctx->num_tries,
> - flows->results +
> - flows->num_packets * flows->categories);
> - }
> -
> - /* set completion parameters and starting index for this slot */
> - parms[n].cmplt = flows->last_cmplt;
> - transition =
> - flows->trans[parms[n].data[*parms[n].data_index++] +
> - ctx->trie[flows->trie].root_index];
> -
> - /*
> - * if this is the last trie for this packet,
> - * then setup next packet.
> - */
> - flows->trie++;
> - if (flows->trie >= ctx->num_tries) {
> - flows->trie = 0;
> - flows->num_packets++;
> - }
> -
> - /* keep track of number of active trie traversals */
> - flows->started++;
> -
> - /* no more tries to process, set slot to an idle position */
> - } else {
> - transition = ctx->idle;
> - parms[n].data = (const uint8_t *)idle;
> - parms[n].data_index = idle;
> - }
> - return transition;
> -}
> -
> -/*
> - * Detect matches. If a match node transition is found, then this trie
> - * traversal is complete and fill the slot with the next trie
> - * to be processed.
> - */
> -static inline uint64_t
> -acl_match_check_transition(uint64_t transition, int slot,
> - const struct rte_acl_ctx *ctx, struct parms *parms,
> - struct acl_flow_data *flows)
> -{
> - const struct rte_acl_match_results *p;
> -
> - p = (const struct rte_acl_match_results *)
> - (flows->trans + ctx->match_index);
> -
> - if (transition & RTE_ACL_NODE_MATCH) {
> -
> - /* Remove flags from index and decrement active traversals */
> - transition &= RTE_ACL_NODE_INDEX;
> - flows->started--;
> -
> - /* Resolve priorities for this trie and running results */
> - if (flows->categories == 1)
> - resolve_single_priority(transition, slot, ctx,
> - parms, p);
> - else
> - resolve_priority(transition, slot, ctx, parms, p,
> - flows->categories);
> -
> - /* Fill the slot with the next trie or idle trie */
> - transition = acl_start_next_trie(flows, parms, slot, ctx);
> -
> - } else if (transition == ctx->idle) {
> - /* reset indirection table for idle slots */
> - parms[slot].data_index = idle;
> - }
> -
> - return transition;
> -}
> -
> -/*
> - * Extract transitions from an XMM register and check for any matches
> - */
> -static void
> -acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
> - struct parms *parms, struct acl_flow_data *flows)
> -{
> - uint64_t transition1, transition2;
> -
> - /* extract transition from low 64 bits. */
> - transition1 = MM_CVT64(*indicies);
> -
> - /* extract transition from high 64 bits. */
> - *indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
> - transition2 = MM_CVT64(*indicies);
> -
> - transition1 = acl_match_check_transition(transition1, slot, ctx,
> - parms, flows);
> - transition2 = acl_match_check_transition(transition2, slot + 1, ctx,
> - parms, flows);
> -
> - /* update indicies with new transitions. */
> - *indicies = MM_SET64(transition2, transition1);
> -}
> -
> -/*
> - * Check for a match in 2 transitions (contained in SSE register)
> - */
> -static inline void
> -acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
> - struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
> -{
> - xmm_t temp;
> -
> - temp = MM_AND(match_mask, *indicies);
> - while (!MM_TESTZ(temp, temp)) {
> - acl_process_matches(indicies, slot, ctx, parms, flows);
> - temp = MM_AND(match_mask, *indicies);
> - }
> -}
> -
> -/*
> - * Check for any match in 4 transitions (contained in 2 SSE registers)
> - */
> -static inline void
> -acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
> - struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
> - xmm_t match_mask)
> -{
> - xmm_t temp;
> -
> - /* put low 32 bits of each transition into one register */
> - temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
> - 0x88);
> - /* test for match node */
> - temp = MM_AND(match_mask, temp);
> -
> - while (!MM_TESTZ(temp, temp)) {
> - acl_process_matches(indicies1, slot, ctx, parms, flows);
> - acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
> -
> - temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
> - (__m128)*indicies2,
> - 0x88);
> - temp = MM_AND(match_mask, temp);
> - }
> -}
> -
> -/*
> - * Calculate the address of the next transition for
> - * all types of nodes. Note that only DFA nodes and range
> - * nodes actually transition to another node. Match
> - * nodes don't move.
> - */
> -static inline xmm_t
> -acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
> - xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
> - xmm_t *indicies1, xmm_t *indicies2)
> -{
> - xmm_t addr, node_types, temp;
> -
> - /*
> - * Note that no transition is done for a match
> - * node and therefore a stream freezes when
> - * it reaches a match.
> - */
> -
> - /* Shuffle low 32 into temp and high 32 into indicies2 */
> - temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
> - 0x88);
> - *indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
> - (__m128)*indicies2, 0xdd);
> -
> - /* Calc node type and node addr */
> - node_types = MM_ANDNOT(index_mask, temp);
> - addr = MM_AND(index_mask, temp);
> -
> - /*
> - * Calc addr for DFAs - addr = dfa_index + input_byte
> - */
> -
> - /* mask for DFA type (0) nodes */
> - temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
> -
> - /* add input byte to DFA position */
> - temp = MM_AND(temp, bytes);
> - temp = MM_AND(temp, next_input);
> - addr = MM_ADD32(addr, temp);
> -
> - /*
> - * Calc addr for Range nodes -> range_index + range(input)
> - */
> - node_types = MM_CMPEQ32(node_types, type_quad_range);
> -
> - /*
> - * Calculate number of range boundaries that are less than the
> - * input value. Range boundaries for each node are in signed 8 bit,
> - * ordered from -128 to 127 in the indicies2 register.
> - * This is effectively a popcnt of bytes that are greater than the
> - * input byte.
> - */
> -
> - /* shuffle input byte to all 4 positions of 32 bit value */
> - temp = MM_SHUFFLE8(next_input, shuffle_input);
> -
> - /* check ranges */
> - temp = MM_CMPGT8(temp, *indicies2);
> -
> - /* convert -1 to 1 (bytes greater than input byte */
> - temp = MM_SIGN8(temp, temp);
> -
> - /* horizontal add pairs of bytes into words */
> - temp = MM_MADD8(temp, temp);
> -
> - /* horizontal add pairs of words into dwords */
> - temp = MM_MADD16(temp, ones_16);
> -
> - /* mask to range type nodes */
> - temp = MM_AND(temp, node_types);
> -
> - /* add index into node position */
> - return MM_ADD32(addr, temp);
> -}
> -
> -/*
> - * Process 4 transitions (in 2 SIMD registers) in parallel
> - */
> -static inline xmm_t
> -transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
> - xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
> - const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
> -{
> - xmm_t addr;
> - uint64_t trans0, trans2;
> -
> - /* Calculate the address (array index) for all 4 transitions. */
> -
> - addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
> - bytes, type_quad_range, indicies1, indicies2);
> -
> - /* Gather 64 bit transitions and pack back into 2 registers. */
> -
> - trans0 = trans[MM_CVT32(addr)];
> -
> - /* get slot 2 */
> -
> - /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
> - addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
> - trans2 = trans[MM_CVT32(addr)];
> -
> - /* get slot 1 */
> -
> - /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
> - addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
> - *indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
> -
> - /* get slot 3 */
> -
> - /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
> - addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
> - *indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
> -
> - return MM_SRL32(next_input, 8);
> -}
> -
> -static inline void
> -acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
> - uint32_t cmplt_size, const uint8_t **data, uint32_t *results,
> - uint32_t data_num, uint32_t categories, const uint64_t *trans)
> -{
> - flows->num_packets = 0;
> - flows->started = 0;
> - flows->trie = 0;
> - flows->last_cmplt = NULL;
> - flows->cmplt_array = cmplt;
> - flows->total_packets = data_num;
> - flows->categories = categories;
> - flows->cmplt_size = cmplt_size;
> - flows->data = data;
> - flows->results = results;
> - flows->trans = trans;
> -}
> -
> -/*
> - * Execute trie traversal with 8 traversals in parallel
> - */
> -static inline void
> -search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
> - uint32_t *results, uint32_t total_packets, uint32_t categories)
> -{
> - int n;
> - struct acl_flow_data flows;
> - uint64_t index_array[MAX_SEARCHES_SSE8];
> - struct completion cmplt[MAX_SEARCHES_SSE8];
> - struct parms parms[MAX_SEARCHES_SSE8];
> - xmm_t input0, input1;
> - xmm_t indicies1, indicies2, indicies3, indicies4;
> -
> - acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
> - total_packets, categories, ctx->trans_table);
> -
> - for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
> - cmplt[n].count = 0;
> - index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
> - }
> -
> - /*
> - * indicies1 contains index_array[0,1]
> - * indicies2 contains index_array[2,3]
> - * indicies3 contains index_array[4,5]
> - * indicies4 contains index_array[6,7]
> - */
> -
> - indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
> - indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
> -
> - indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
> - indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
> -
> - /* Check for any matches. */
> - acl_match_check_x4(0, ctx, parms, &flows,
> - &indicies1, &indicies2, mm_match_mask.m);
> - acl_match_check_x4(4, ctx, parms, &flows,
> - &indicies3, &indicies4, mm_match_mask.m);
> -
> - while (flows.started > 0) {
> -
> - /* Gather 4 bytes of input data for each stream. */
> - input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
> - 0);
> - input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
> - 0);
> -
> - input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
> - input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
> -
> - input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
> - input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
> -
> - input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
> - input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
> -
> - /* Process the 4 bytes of input on each stream. */
> -
> - input0 = transition4(mm_index_mask.m, input0,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies1, &indicies2);
> -
> - input1 = transition4(mm_index_mask.m, input1,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies3, &indicies4);
> -
> - input0 = transition4(mm_index_mask.m, input0,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies1, &indicies2);
> -
> - input1 = transition4(mm_index_mask.m, input1,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies3, &indicies4);
> -
> - input0 = transition4(mm_index_mask.m, input0,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies1, &indicies2);
> -
> - input1 = transition4(mm_index_mask.m, input1,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies3, &indicies4);
> -
> - input0 = transition4(mm_index_mask.m, input0,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies1, &indicies2);
> -
> - input1 = transition4(mm_index_mask.m, input1,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies3, &indicies4);
> -
> - /* Check for any matches. */
> - acl_match_check_x4(0, ctx, parms, &flows,
> - &indicies1, &indicies2, mm_match_mask.m);
> - acl_match_check_x4(4, ctx, parms, &flows,
> - &indicies3, &indicies4, mm_match_mask.m);
> - }
> -}
> -
> -/*
> - * Execute trie traversal with 4 traversals in parallel
> - */
> -static inline void
> -search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
> - uint32_t *results, int total_packets, uint32_t categories)
> -{
> - int n;
> - struct acl_flow_data flows;
> - uint64_t index_array[MAX_SEARCHES_SSE4];
> - struct completion cmplt[MAX_SEARCHES_SSE4];
> - struct parms parms[MAX_SEARCHES_SSE4];
> - xmm_t input, indicies1, indicies2;
> -
> - acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
> - total_packets, categories, ctx->trans_table);
> -
> - for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
> - cmplt[n].count = 0;
> - index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
> - }
> -
> - indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
> - indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
> -
> - /* Check for any matches. */
> - acl_match_check_x4(0, ctx, parms, &flows,
> - &indicies1, &indicies2, mm_match_mask.m);
> -
> - while (flows.started > 0) {
> -
> - /* Gather 4 bytes of input data for each stream. */
> - input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
> - input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
> - input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
> - input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
> -
> - /* Process the 4 bytes of input on each stream. */
> - input = transition4(mm_index_mask.m, input,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies1, &indicies2);
> -
> - input = transition4(mm_index_mask.m, input,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies1, &indicies2);
> -
> - input = transition4(mm_index_mask.m, input,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies1, &indicies2);
> -
> - input = transition4(mm_index_mask.m, input,
> - mm_shuffle_input.m, mm_ones_16.m,
> - mm_bytes.m, mm_type_quad_range.m,
> - flows.trans, &indicies1, &indicies2);
> -
> - /* Check for any matches. */
> - acl_match_check_x4(0, ctx, parms, &flows,
> - &indicies1, &indicies2, mm_match_mask.m);
> - }
> -}
> -
> -static inline xmm_t
> -transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
> - xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
> - const uint64_t *trans, xmm_t *indicies1)
> -{
> - uint64_t t;
> - xmm_t addr, indicies2;
> -
> - indicies2 = MM_XOR(ones_16, ones_16);
> -
> - addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
> - bytes, type_quad_range, indicies1, &indicies2);
> -
> - /* Gather 64 bit transitions and pack 2 per register. */
> -
> - t = trans[MM_CVT32(addr)];
> -
> - /* get slot 1 */
> - addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
> - *indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
> -
> - return MM_SRL32(next_input, 8);
> -}
> -
> -/*
> - * Execute trie traversal with 2 traversals in parallel.
> - */
> -static inline void
> -search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
> - uint32_t *results, uint32_t total_packets, uint32_t categories)
> -{
> - int n;
> - struct acl_flow_data flows;
> - uint64_t index_array[MAX_SEARCHES_SSE2];
> - struct completion cmplt[MAX_SEARCHES_SSE2];
> - struct parms parms[MAX_SEARCHES_SSE2];
> - xmm_t input, indicies;
> -
> - acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
> - total_packets, categories, ctx->trans_table);
> -
> - for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
> - cmplt[n].count = 0;
> - index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
> - }
> -
> - indicies = MM_LOADU((xmm_t *) &index_array[0]);
> -
> - /* Check for any matches. */
> - acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
> -
> - while (flows.started > 0) {
> -
> - /* Gather 4 bytes of input data for each stream. */
> - input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
> - input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
> -
> - /* Process the 4 bytes of input on each stream. */
> -
> - input = transition2(mm_index_mask64.m, input,
> - mm_shuffle_input64.m, mm_ones_16.m,
> - mm_bytes64.m, mm_type_quad_range64.m,
> - flows.trans, &indicies);
> -
> - input = transition2(mm_index_mask64.m, input,
> - mm_shuffle_input64.m, mm_ones_16.m,
> - mm_bytes64.m, mm_type_quad_range64.m,
> - flows.trans, &indicies);
> -
> - input = transition2(mm_index_mask64.m, input,
> - mm_shuffle_input64.m, mm_ones_16.m,
> - mm_bytes64.m, mm_type_quad_range64.m,
> - flows.trans, &indicies);
> -
> - input = transition2(mm_index_mask64.m, input,
> - mm_shuffle_input64.m, mm_ones_16.m,
> - mm_bytes64.m, mm_type_quad_range64.m,
> - flows.trans, &indicies);
> -
> - /* Check for any matches. */
> - acl_match_check_x2(0, ctx, parms, &flows, &indicies,
> - mm_match_mask64.m);
> - }
> -}
> -
> -/*
> - * When processing the transition, rather than using if/else
> - * construct, the offset is calculated for DFA and QRANGE and
> - * then conditionally added to the address based on node type.
> - * This is done to avoid branch mis-predictions. Since the
> - * offset is rather simple calculation it is more efficient
> - * to do the calculation and do a condition move rather than
> - * a conditional branch to determine which calculation to do.
> - */
> -static inline uint32_t
> -scan_forward(uint32_t input, uint32_t max)
> -{
> - return (input == 0) ? max : rte_bsf32(input);
> -}
> -
> -static inline uint64_t
> -scalar_transition(const uint64_t *trans_table, uint64_t transition,
> - uint8_t input)
> -{
> - uint32_t addr, index, ranges, x, a, b, c;
> -
> - /* break transition into component parts */
> - ranges = transition >> (sizeof(index) * CHAR_BIT);
> -
> - /* calc address for a QRANGE node */
> - c = input * SCALAR_QRANGE_MULT;
> - a = ranges | SCALAR_QRANGE_MIN;
> - index = transition & ~RTE_ACL_NODE_INDEX;
> - a -= (c & SCALAR_QRANGE_MASK);
> - b = c & SCALAR_QRANGE_MIN;
> - addr = transition ^ index;
> - a &= SCALAR_QRANGE_MIN;
> - a ^= (ranges ^ b) & (a ^ b);
> - x = scan_forward(a, 32) >> 3;
> - addr += (index == RTE_ACL_NODE_DFA) ? input : x;
> -
> - /* pickup next transition */
> - transition = *(trans_table + addr);
> - return transition;
> -}
> -
> -int
> -rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
> - uint32_t *results, uint32_t num, uint32_t categories)
> -{
> - int n;
> - uint64_t transition0, transition1;
> - uint32_t input0, input1;
> - struct acl_flow_data flows;
> - uint64_t index_array[MAX_SEARCHES_SCALAR];
> - struct completion cmplt[MAX_SEARCHES_SCALAR];
> - struct parms parms[MAX_SEARCHES_SCALAR];
> -
> - if (categories != 1 &&
> - ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
> - return -EINVAL;
> -
> - acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
> - categories, ctx->trans_table);
> -
> - for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
> - cmplt[n].count = 0;
> - index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
> - }
> -
> - transition0 = index_array[0];
> - transition1 = index_array[1];
> -
> - while (flows.started > 0) {
> -
> - input0 = GET_NEXT_4BYTES(parms, 0);
> - input1 = GET_NEXT_4BYTES(parms, 1);
> -
> - for (n = 0; n < 4; n++) {
> - if (likely((transition0 & RTE_ACL_NODE_MATCH) == 0))
> - transition0 = scalar_transition(flows.trans,
> - transition0, (uint8_t)input0);
> -
> - input0 >>= CHAR_BIT;
> -
> - if (likely((transition1 & RTE_ACL_NODE_MATCH) == 0))
> - transition1 = scalar_transition(flows.trans,
> - transition1, (uint8_t)input1);
> -
> - input1 >>= CHAR_BIT;
> -
> - }
> - if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
> - transition0 = acl_match_check_transition(transition0,
> - 0, ctx, parms, &flows);
> - transition1 = acl_match_check_transition(transition1,
> - 1, ctx, parms, &flows);
> -
> - }
> - }
> - return 0;
> -}
> -
> -int
> -rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
> - uint32_t *results, uint32_t num, uint32_t categories)
> -{
> - if (categories != 1 &&
> - ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
> - return -EINVAL;
> -
> - if (likely(num >= MAX_SEARCHES_SSE8))
> - search_sse_8(ctx, data, results, num, categories);
> - else if (num >= MAX_SEARCHES_SSE4)
> - search_sse_4(ctx, data, results, num, categories);
> - else
> - search_sse_2(ctx, data, results, num, categories);
> -
> - return 0;
> -}
> diff --git a/lib/librte_acl/acl_run.h b/lib/librte_acl/acl_run.h
> new file mode 100644
> index 0000000..c39650e
> --- /dev/null
> +++ b/lib/librte_acl/acl_run.h
> @@ -0,0 +1,220 @@
> +/*-
> + * BSD LICENSE
> + *
> + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
> + * All rights reserved.
> + *
> + * Redistribution and use in source and binary forms, with or without
> + * modification, are permitted provided that the following conditions
> + * are met:
> + *
> + * * Redistributions of source code must retain the above copyright
> + * notice, this list of conditions and the following disclaimer.
> + * * Redistributions in binary form must reproduce the above copyright
> + * notice, this list of conditions and the following disclaimer in
> + * the documentation and/or other materials provided with the
> + * distribution.
> + * * Neither the name of Intel Corporation nor the names of its
> + * contributors may be used to endorse or promote products derived
> + * from this software without specific prior written permission.
> + *
> + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
> + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
> + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
> + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
> + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
> + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
> + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
> + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
> + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
> + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
> + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> + */
> +
> +#ifndef _ACL_RUN_H_
> +#define _ACL_RUN_H_
> +
> +#include <rte_acl.h>
> +#include "acl_vect.h"
> +#include "acl.h"
> +
> +#define MAX_SEARCHES_SSE8 8
> +#define MAX_SEARCHES_SSE4 4
> +#define MAX_SEARCHES_SSE2 2
> +#define MAX_SEARCHES_SCALAR 2
> +
> +#define GET_NEXT_4BYTES(prm, idx) \
> + (*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++)))
> +
> +
> +#define RTE_ACL_NODE_INDEX ((uint32_t)~RTE_ACL_NODE_TYPE)
> +
> +#define SCALAR_QRANGE_MULT 0x01010101
> +#define SCALAR_QRANGE_MASK 0x7f7f7f7f
> +#define SCALAR_QRANGE_MIN 0x80808080
> +
> +/*
> + * Structure to manage N parallel trie traversals.
> + * The runtime trie traversal routines can process 8, 4, or 2 tries
> + * in parallel. Each packet may require multiple trie traversals (up to 4).
> + * This structure is used to fill the slots (0 to n-1) for parallel processing
> + * with the trie traversals needed for each packet.
> + */
> +struct acl_flow_data {
> + uint32_t num_packets;
> + /* number of packets processed */
> + uint32_t started;
> + /* number of trie traversals in progress */
> + uint32_t trie;
> + /* current trie index (0 to N-1) */
> + uint32_t cmplt_size;
> + uint32_t total_packets;
> + uint32_t categories;
> + /* number of result categories per packet. */
> + /* maximum number of packets to process */
> + const uint64_t *trans;
> + const uint8_t **data;
> + uint32_t *results;
> + struct completion *last_cmplt;
> + struct completion *cmplt_array;
> +};
> +
> +/*
> + * Structure to maintain running results for
> + * a single packet (up to 4 tries).
> + */
> +struct completion {
> + uint32_t *results; /* running results. */
> + int32_t priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */
> + uint32_t count; /* num of remaining tries */
> + /* true for allocated struct */
> +} __attribute__((aligned(XMM_SIZE)));
> +
> +/*
> + * One parms structure for each slot in the search engine.
> + */
> +struct parms {
> + const uint8_t *data;
> + /* input data for this packet */
> + const uint32_t *data_index;
> + /* data indirection for this trie */
> + struct completion *cmplt;
> + /* completion data for this packet */
> +};
> +
> +/*
> + * Define an global idle node for unused engine slots
> + */
> +static const uint32_t idle[UINT8_MAX + 1];
> +
> +/*
> + * Allocate a completion structure to manage the tries for a packet.
> + */
> +static inline struct completion *
> +alloc_completion(struct completion *p, uint32_t size, uint32_t tries,
> + uint32_t *results)
> +{
> + uint32_t n;
> +
> + for (n = 0; n < size; n++) {
> +
> + if (p[n].count == 0) {
> +
> + /* mark as allocated and set number of tries. */
> + p[n].count = tries;
> + p[n].results = results;
> + return &(p[n]);
> + }
> + }
> +
> + /* should never get here */
> + return NULL;
> +}
> +
> +/*
> + * Resolve priority for a single result trie.
> + */
> +static inline void
> +resolve_single_priority(uint64_t transition, int n,
> + const struct rte_acl_ctx *ctx, struct parms *parms,
> + const struct rte_acl_match_results *p)
> +{
> + if (parms[n].cmplt->count == ctx->num_tries ||
> + parms[n].cmplt->priority[0] <=
> + p[transition].priority[0]) {
> +
> + parms[n].cmplt->priority[0] = p[transition].priority[0];
> + parms[n].cmplt->results[0] = p[transition].results[0];
> + }
> +}
> +
> +/*
> + * Routine to fill a slot in the parallel trie traversal array (parms) from
> + * the list of packets (flows).
> + */
> +static inline uint64_t
> +acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
> + const struct rte_acl_ctx *ctx)
> +{
> + uint64_t transition;
> +
> + /* if there are any more packets to process */
> + if (flows->num_packets < flows->total_packets) {
> + parms[n].data = flows->data[flows->num_packets];
> + parms[n].data_index = ctx->trie[flows->trie].data_index;
> +
> + /* if this is the first trie for this packet */
> + if (flows->trie == 0) {
> + flows->last_cmplt = alloc_completion(flows->cmplt_array,
> + flows->cmplt_size, ctx->num_tries,
> + flows->results +
> + flows->num_packets * flows->categories);
> + }
> +
> + /* set completion parameters and starting index for this slot */
> + parms[n].cmplt = flows->last_cmplt;
> + transition =
> + flows->trans[parms[n].data[*parms[n].data_index++] +
> + ctx->trie[flows->trie].root_index];
> +
> + /*
> + * if this is the last trie for this packet,
> + * then setup next packet.
> + */
> + flows->trie++;
> + if (flows->trie >= ctx->num_tries) {
> + flows->trie = 0;
> + flows->num_packets++;
> + }
> +
> + /* keep track of number of active trie traversals */
> + flows->started++;
> +
> + /* no more tries to process, set slot to an idle position */
> + } else {
> + transition = ctx->idle;
> + parms[n].data = (const uint8_t *)idle;
> + parms[n].data_index = idle;
> + }
> + return transition;
> +}
> +
> +static inline void
> +acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
> + uint32_t cmplt_size, const uint8_t **data, uint32_t *results,
> + uint32_t data_num, uint32_t categories, const uint64_t *trans)
> +{
> + flows->num_packets = 0;
> + flows->started = 0;
> + flows->trie = 0;
> + flows->last_cmplt = NULL;
> + flows->cmplt_array = cmplt;
> + flows->total_packets = data_num;
> + flows->categories = categories;
> + flows->cmplt_size = cmplt_size;
> + flows->data = data;
> + flows->results = results;
> + flows->trans = trans;
> +}
> +
> +#endif /* _ACL_RUN_H_ */
> diff --git a/lib/librte_acl/acl_run_scalar.c b/lib/librte_acl/acl_run_scalar.c
> new file mode 100644
> index 0000000..a59ff17
> --- /dev/null
> +++ b/lib/librte_acl/acl_run_scalar.c
> @@ -0,0 +1,198 @@
> +/*-
> + * BSD LICENSE
> + *
> + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
> + * All rights reserved.
> + *
> + * Redistribution and use in source and binary forms, with or without
> + * modification, are permitted provided that the following conditions
> + * are met:
> + *
> + * * Redistributions of source code must retain the above copyright
> + * notice, this list of conditions and the following disclaimer.
> + * * Redistributions in binary form must reproduce the above copyright
> + * notice, this list of conditions and the following disclaimer in
> + * the documentation and/or other materials provided with the
> + * distribution.
> + * * Neither the name of Intel Corporation nor the names of its
> + * contributors may be used to endorse or promote products derived
> + * from this software without specific prior written permission.
> + *
> + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
> + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
> + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
> + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
> + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
> + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
> + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
> + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
> + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
> + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
> + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> + */
> +
> +#include "acl_run.h"
> +#include "acl_match_check.h"
> +
> +int
> +rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
> + uint32_t *results, uint32_t num, uint32_t categories);
> +
> +/*
> + * Resolve priority for multiple results (scalar version).
> + * This consists comparing the priority of the current traversal with the
> + * running set of results for the packet.
> + * For each result, keep a running array of the result (rule number) and
> + * its priority for each category.
> + */
> +static inline void
> +resolve_priority_scalar(uint64_t transition, int n,
> + const struct rte_acl_ctx *ctx, struct parms *parms,
> + const struct rte_acl_match_results *p, uint32_t categories)
> +{
> + uint32_t i;
> + int32_t *saved_priority;
> + uint32_t *saved_results;
> + const int32_t *priority;
> + const uint32_t *results;
> +
> + saved_results = parms[n].cmplt->results;
> + saved_priority = parms[n].cmplt->priority;
> +
> + /* results and priorities for completed trie */
> + results = p[transition].results;
> + priority = p[transition].priority;
> +
> + /* if this is not the first completed trie */
> + if (parms[n].cmplt->count != ctx->num_tries) {
> + for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
> +
> + if (saved_priority[i] <= priority[i]) {
> + saved_priority[i] = priority[i];
> + saved_results[i] = results[i];
> + }
> + if (saved_priority[i + 1] <= priority[i + 1]) {
> + saved_priority[i + 1] = priority[i + 1];
> + saved_results[i + 1] = results[i + 1];
> + }
> + if (saved_priority[i + 2] <= priority[i + 2]) {
> + saved_priority[i + 2] = priority[i + 2];
> + saved_results[i + 2] = results[i + 2];
> + }
> + if (saved_priority[i + 3] <= priority[i + 3]) {
> + saved_priority[i + 3] = priority[i + 3];
> + saved_results[i + 3] = results[i + 3];
> + }
> + }
> + } else {
> + for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
> + saved_priority[i] = priority[i];
> + saved_priority[i + 1] = priority[i + 1];
> + saved_priority[i + 2] = priority[i + 2];
> + saved_priority[i + 3] = priority[i + 3];
> +
> + saved_results[i] = results[i];
> + saved_results[i + 1] = results[i + 1];
> + saved_results[i + 2] = results[i + 2];
> + saved_results[i + 3] = results[i + 3];
> + }
> + }
> +}
> +
> +/*
> + * When processing the transition, rather than using if/else
> + * construct, the offset is calculated for DFA and QRANGE and
> + * then conditionally added to the address based on node type.
> + * This is done to avoid branch mis-predictions. Since the
> + * offset is rather simple calculation it is more efficient
> + * to do the calculation and do a condition move rather than
> + * a conditional branch to determine which calculation to do.
> + */
> +static inline uint32_t
> +scan_forward(uint32_t input, uint32_t max)
> +{
> + return (input == 0) ? max : rte_bsf32(input);
> +}
> +
> +static inline uint64_t
> +scalar_transition(const uint64_t *trans_table, uint64_t transition,
> + uint8_t input)
> +{
> + uint32_t addr, index, ranges, x, a, b, c;
> +
> + /* break transition into component parts */
> + ranges = transition >> (sizeof(index) * CHAR_BIT);
> +
> + /* calc address for a QRANGE node */
> + c = input * SCALAR_QRANGE_MULT;
> + a = ranges | SCALAR_QRANGE_MIN;
> + index = transition & ~RTE_ACL_NODE_INDEX;
> + a -= (c & SCALAR_QRANGE_MASK);
> + b = c & SCALAR_QRANGE_MIN;
> + addr = transition ^ index;
> + a &= SCALAR_QRANGE_MIN;
> + a ^= (ranges ^ b) & (a ^ b);
> + x = scan_forward(a, 32) >> 3;
> + addr += (index == RTE_ACL_NODE_DFA) ? input : x;
> +
> + /* pickup next transition */
> + transition = *(trans_table + addr);
> + return transition;
> +}
> +
> +int
> +rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
> + uint32_t *results, uint32_t num, uint32_t categories)
> +{
> + int n;
> + uint64_t transition0, transition1;
> + uint32_t input0, input1;
> + struct acl_flow_data flows;
> + uint64_t index_array[MAX_SEARCHES_SCALAR];
> + struct completion cmplt[MAX_SEARCHES_SCALAR];
> + struct parms parms[MAX_SEARCHES_SCALAR];
> +
> + if (categories != 1 &&
> + ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
> + return -EINVAL;
> +
> + acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
> + categories, ctx->trans_table);
> +
> + for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
> + cmplt[n].count = 0;
> + index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
> + }
> +
> + transition0 = index_array[0];
> + transition1 = index_array[1];
> +
> + while (flows.started > 0) {
> +
> + input0 = GET_NEXT_4BYTES(parms, 0);
> + input1 = GET_NEXT_4BYTES(parms, 1);
> +
> + for (n = 0; n < 4; n++) {
> + if (likely((transition0 & RTE_ACL_NODE_MATCH) == 0))
> + transition0 = scalar_transition(flows.trans,
> + transition0, (uint8_t)input0);
> +
> + input0 >>= CHAR_BIT;
> +
> + if (likely((transition1 & RTE_ACL_NODE_MATCH) == 0))
> + transition1 = scalar_transition(flows.trans,
> + transition1, (uint8_t)input1);
> +
> + input1 >>= CHAR_BIT;
> +
> + }
> + if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
> + transition0 = acl_match_check(transition0,
> + 0, ctx, parms, &flows, resolve_priority_scalar);
> + transition1 = acl_match_check(transition1,
> + 1, ctx, parms, &flows, resolve_priority_scalar);
> +
> + }
> + }
> + return 0;
> +}
> diff --git a/lib/librte_acl/acl_run_sse.c b/lib/librte_acl/acl_run_sse.c
> new file mode 100644
> index 0000000..3f5c721
> --- /dev/null
> +++ b/lib/librte_acl/acl_run_sse.c
> @@ -0,0 +1,627 @@
> +/*-
> + * BSD LICENSE
> + *
> + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
> + * All rights reserved.
> + *
> + * Redistribution and use in source and binary forms, with or without
> + * modification, are permitted provided that the following conditions
> + * are met:
> + *
> + * * Redistributions of source code must retain the above copyright
> + * notice, this list of conditions and the following disclaimer.
> + * * Redistributions in binary form must reproduce the above copyright
> + * notice, this list of conditions and the following disclaimer in
> + * the documentation and/or other materials provided with the
> + * distribution.
> + * * Neither the name of Intel Corporation nor the names of its
> + * contributors may be used to endorse or promote products derived
> + * from this software without specific prior written permission.
> + *
> + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
> + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
> + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
> + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
> + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
> + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
> + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
> + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
> + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
> + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
> + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
> + */
> +
> +#include "acl_run.h"
> +#include "acl_match_check.h"
> +
> +enum {
> + SHUFFLE32_SLOT1 = 0xe5,
> + SHUFFLE32_SLOT2 = 0xe6,
> + SHUFFLE32_SLOT3 = 0xe7,
> + SHUFFLE32_SWAP64 = 0x4e,
> +};
> +
> +static const rte_xmm_t mm_type_quad_range = {
> + .u32 = {
> + RTE_ACL_NODE_QRANGE,
> + RTE_ACL_NODE_QRANGE,
> + RTE_ACL_NODE_QRANGE,
> + RTE_ACL_NODE_QRANGE,
> + },
> +};
> +
> +static const rte_xmm_t mm_type_quad_range64 = {
> + .u32 = {
> + RTE_ACL_NODE_QRANGE,
> + RTE_ACL_NODE_QRANGE,
> + 0,
> + 0,
> + },
> +};
> +
> +static const rte_xmm_t mm_shuffle_input = {
> + .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
> +};
> +
> +static const rte_xmm_t mm_shuffle_input64 = {
> + .u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
> +};
> +
> +static const rte_xmm_t mm_ones_16 = {
> + .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
> +};
> +
> +static const rte_xmm_t mm_bytes = {
> + .u32 = {UINT8_MAX, UINT8_MAX, UINT8_MAX, UINT8_MAX},
> +};
> +
> +static const rte_xmm_t mm_bytes64 = {
> + .u32 = {UINT8_MAX, UINT8_MAX, 0, 0},
> +};
> +
> +static const rte_xmm_t mm_match_mask = {
> + .u32 = {
> + RTE_ACL_NODE_MATCH,
> + RTE_ACL_NODE_MATCH,
> + RTE_ACL_NODE_MATCH,
> + RTE_ACL_NODE_MATCH,
> + },
> +};
> +
> +static const rte_xmm_t mm_match_mask64 = {
> + .u32 = {
> + RTE_ACL_NODE_MATCH,
> + 0,
> + RTE_ACL_NODE_MATCH,
> + 0,
> + },
> +};
> +
> +static const rte_xmm_t mm_index_mask = {
> + .u32 = {
> + RTE_ACL_NODE_INDEX,
> + RTE_ACL_NODE_INDEX,
> + RTE_ACL_NODE_INDEX,
> + RTE_ACL_NODE_INDEX,
> + },
> +};
> +
> +static const rte_xmm_t mm_index_mask64 = {
> + .u32 = {
> + RTE_ACL_NODE_INDEX,
> + RTE_ACL_NODE_INDEX,
> + 0,
> + 0,
> + },
> +};
> +
> +
> +/*
> + * Resolve priority for multiple results (sse version).
> + * This consists comparing the priority of the current traversal with the
> + * running set of results for the packet.
> + * For each result, keep a running array of the result (rule number) and
> + * its priority for each category.
> + */
> +static inline void
> +resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
> + struct parms *parms, const struct rte_acl_match_results *p,
> + uint32_t categories)
> +{
> + uint32_t x;
> + xmm_t results, priority, results1, priority1, selector;
> + xmm_t *saved_results, *saved_priority;
> +
> + for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
> +
> + saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
> + saved_priority =
> + (xmm_t *)(&parms[n].cmplt->priority[x]);
> +
> + /* get results and priorities for completed trie */
> + results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
> + priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
> +
> + /* if this is not the first completed trie */
> + if (parms[n].cmplt->count != ctx->num_tries) {
> +
> + /* get running best results and their priorities */
> + results1 = MM_LOADU(saved_results);
> + priority1 = MM_LOADU(saved_priority);
> +
> + /* select results that are highest priority */
> + selector = MM_CMPGT32(priority1, priority);
> + results = MM_BLENDV8(results, results1, selector);
> + priority = MM_BLENDV8(priority, priority1, selector);
> + }
> +
> + /* save running best results and their priorities */
> + MM_STOREU(saved_results, results);
> + MM_STOREU(saved_priority, priority);
> + }
> +}
> +
> +/*
> + * Extract transitions from an XMM register and check for any matches
> + */
> +static void
> +acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
> + struct parms *parms, struct acl_flow_data *flows)
> +{
> + uint64_t transition1, transition2;
> +
> + /* extract transition from low 64 bits. */
> + transition1 = MM_CVT64(*indicies);
> +
> + /* extract transition from high 64 bits. */
> + *indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
> + transition2 = MM_CVT64(*indicies);
> +
> + transition1 = acl_match_check(transition1, slot, ctx,
> + parms, flows, resolve_priority_sse);
> + transition2 = acl_match_check(transition2, slot + 1, ctx,
> + parms, flows, resolve_priority_sse);
> +
> + /* update indicies with new transitions. */
> + *indicies = MM_SET64(transition2, transition1);
> +}
> +
> +/*
> + * Check for a match in 2 transitions (contained in SSE register)
> + */
> +static inline void
> +acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
> + struct acl_flow_data *flows, xmm_t *indicies, xmm_t match_mask)
> +{
> + xmm_t temp;
> +
> + temp = MM_AND(match_mask, *indicies);
> + while (!MM_TESTZ(temp, temp)) {
> + acl_process_matches(indicies, slot, ctx, parms, flows);
> + temp = MM_AND(match_mask, *indicies);
> + }
> +}
> +
> +/*
> + * Check for any match in 4 transitions (contained in 2 SSE registers)
> + */
> +static inline void
> +acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
> + struct acl_flow_data *flows, xmm_t *indicies1, xmm_t *indicies2,
> + xmm_t match_mask)
> +{
> + xmm_t temp;
> +
> + /* put low 32 bits of each transition into one register */
> + temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
> + 0x88);
> + /* test for match node */
> + temp = MM_AND(match_mask, temp);
> +
> + while (!MM_TESTZ(temp, temp)) {
> + acl_process_matches(indicies1, slot, ctx, parms, flows);
> + acl_process_matches(indicies2, slot + 2, ctx, parms, flows);
> +
> + temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
> + (__m128)*indicies2,
> + 0x88);
> + temp = MM_AND(match_mask, temp);
> + }
> +}
> +
> +/*
> + * Calculate the address of the next transition for
> + * all types of nodes. Note that only DFA nodes and range
> + * nodes actually transition to another node. Match
> + * nodes don't move.
> + */
> +static inline xmm_t
> +acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
> + xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
> + xmm_t *indicies1, xmm_t *indicies2)
> +{
> + xmm_t addr, node_types, temp;
> +
> + /*
> + * Note that no transition is done for a match
> + * node and therefore a stream freezes when
> + * it reaches a match.
> + */
> +
> + /* Shuffle low 32 into temp and high 32 into indicies2 */
> + temp = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1, (__m128)*indicies2,
> + 0x88);
> + *indicies2 = (xmm_t)MM_SHUFFLEPS((__m128)*indicies1,
> + (__m128)*indicies2, 0xdd);
> +
> + /* Calc node type and node addr */
> + node_types = MM_ANDNOT(index_mask, temp);
> + addr = MM_AND(index_mask, temp);
> +
> + /*
> + * Calc addr for DFAs - addr = dfa_index + input_byte
> + */
> +
> + /* mask for DFA type (0) nodes */
> + temp = MM_CMPEQ32(node_types, MM_XOR(node_types, node_types));
> +
> + /* add input byte to DFA position */
> + temp = MM_AND(temp, bytes);
> + temp = MM_AND(temp, next_input);
> + addr = MM_ADD32(addr, temp);
> +
> + /*
> + * Calc addr for Range nodes -> range_index + range(input)
> + */
> + node_types = MM_CMPEQ32(node_types, type_quad_range);
> +
> + /*
> + * Calculate number of range boundaries that are less than the
> + * input value. Range boundaries for each node are in signed 8 bit,
> + * ordered from -128 to 127 in the indicies2 register.
> + * This is effectively a popcnt of bytes that are greater than the
> + * input byte.
> + */
> +
> + /* shuffle input byte to all 4 positions of 32 bit value */
> + temp = MM_SHUFFLE8(next_input, shuffle_input);
> +
> + /* check ranges */
> + temp = MM_CMPGT8(temp, *indicies2);
> +
> + /* convert -1 to 1 (bytes greater than input byte */
> + temp = MM_SIGN8(temp, temp);
> +
> + /* horizontal add pairs of bytes into words */
> + temp = MM_MADD8(temp, temp);
> +
> + /* horizontal add pairs of words into dwords */
> + temp = MM_MADD16(temp, ones_16);
> +
> + /* mask to range type nodes */
> + temp = MM_AND(temp, node_types);
> +
> + /* add index into node position */
> + return MM_ADD32(addr, temp);
> +}
> +
> +/*
> + * Process 4 transitions (in 2 SIMD registers) in parallel
> + */
> +static inline xmm_t
> +transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
> + xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
> + const uint64_t *trans, xmm_t *indicies1, xmm_t *indicies2)
> +{
> + xmm_t addr;
> + uint64_t trans0, trans2;
> +
> + /* Calculate the address (array index) for all 4 transitions. */
> +
> + addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
> + bytes, type_quad_range, indicies1, indicies2);
> +
> + /* Gather 64 bit transitions and pack back into 2 registers. */
> +
> + trans0 = trans[MM_CVT32(addr)];
> +
> + /* get slot 2 */
> +
> + /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
> + addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
> + trans2 = trans[MM_CVT32(addr)];
> +
> + /* get slot 1 */
> +
> + /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
> + addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
> + *indicies1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
> +
> + /* get slot 3 */
> +
> + /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
> + addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
> + *indicies2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
> +
> + return MM_SRL32(next_input, 8);
> +}
> +
> +/*
> + * Execute trie traversal with 8 traversals in parallel
> + */
> +static inline int
> +search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
> + uint32_t *results, uint32_t total_packets, uint32_t categories)
> +{
> + int n;
> + struct acl_flow_data flows;
> + uint64_t index_array[MAX_SEARCHES_SSE8];
> + struct completion cmplt[MAX_SEARCHES_SSE8];
> + struct parms parms[MAX_SEARCHES_SSE8];
> + xmm_t input0, input1;
> + xmm_t indicies1, indicies2, indicies3, indicies4;
> +
> + acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
> + total_packets, categories, ctx->trans_table);
> +
> + for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
> + cmplt[n].count = 0;
> + index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
> + }
> +
> + /*
> + * indicies1 contains index_array[0,1]
> + * indicies2 contains index_array[2,3]
> + * indicies3 contains index_array[4,5]
> + * indicies4 contains index_array[6,7]
> + */
> +
> + indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
> + indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
> +
> + indicies3 = MM_LOADU((xmm_t *) &index_array[4]);
> + indicies4 = MM_LOADU((xmm_t *) &index_array[6]);
> +
> + /* Check for any matches. */
> + acl_match_check_x4(0, ctx, parms, &flows,
> + &indicies1, &indicies2, mm_match_mask.m);
> + acl_match_check_x4(4, ctx, parms, &flows,
> + &indicies3, &indicies4, mm_match_mask.m);
> +
> + while (flows.started > 0) {
> +
> + /* Gather 4 bytes of input data for each stream. */
> + input0 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0),
> + 0);
> + input1 = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 4),
> + 0);
> +
> + input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
> + input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
> +
> + input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
> + input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
> +
> + input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
> + input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
> +
> + /* Process the 4 bytes of input on each stream. */
> +
> + input0 = transition4(mm_index_mask.m, input0,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies1, &indicies2);
> +
> + input1 = transition4(mm_index_mask.m, input1,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies3, &indicies4);
> +
> + input0 = transition4(mm_index_mask.m, input0,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies1, &indicies2);
> +
> + input1 = transition4(mm_index_mask.m, input1,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies3, &indicies4);
> +
> + input0 = transition4(mm_index_mask.m, input0,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies1, &indicies2);
> +
> + input1 = transition4(mm_index_mask.m, input1,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies3, &indicies4);
> +
> + input0 = transition4(mm_index_mask.m, input0,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies1, &indicies2);
> +
> + input1 = transition4(mm_index_mask.m, input1,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies3, &indicies4);
> +
> + /* Check for any matches. */
> + acl_match_check_x4(0, ctx, parms, &flows,
> + &indicies1, &indicies2, mm_match_mask.m);
> + acl_match_check_x4(4, ctx, parms, &flows,
> + &indicies3, &indicies4, mm_match_mask.m);
> + }
> +
> + return 0;
> +}
> +
> +/*
> + * Execute trie traversal with 4 traversals in parallel
> + */
> +static inline int
> +search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
> + uint32_t *results, int total_packets, uint32_t categories)
> +{
> + int n;
> + struct acl_flow_data flows;
> + uint64_t index_array[MAX_SEARCHES_SSE4];
> + struct completion cmplt[MAX_SEARCHES_SSE4];
> + struct parms parms[MAX_SEARCHES_SSE4];
> + xmm_t input, indicies1, indicies2;
> +
> + acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
> + total_packets, categories, ctx->trans_table);
> +
> + for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
> + cmplt[n].count = 0;
> + index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
> + }
> +
> + indicies1 = MM_LOADU((xmm_t *) &index_array[0]);
> + indicies2 = MM_LOADU((xmm_t *) &index_array[2]);
> +
> + /* Check for any matches. */
> + acl_match_check_x4(0, ctx, parms, &flows,
> + &indicies1, &indicies2, mm_match_mask.m);
> +
> + while (flows.started > 0) {
> +
> + /* Gather 4 bytes of input data for each stream. */
> + input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
> + input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
> + input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
> + input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
> +
> + /* Process the 4 bytes of input on each stream. */
> + input = transition4(mm_index_mask.m, input,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies1, &indicies2);
> +
> + input = transition4(mm_index_mask.m, input,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies1, &indicies2);
> +
> + input = transition4(mm_index_mask.m, input,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies1, &indicies2);
> +
> + input = transition4(mm_index_mask.m, input,
> + mm_shuffle_input.m, mm_ones_16.m,
> + mm_bytes.m, mm_type_quad_range.m,
> + flows.trans, &indicies1, &indicies2);
> +
> + /* Check for any matches. */
> + acl_match_check_x4(0, ctx, parms, &flows,
> + &indicies1, &indicies2, mm_match_mask.m);
> + }
> +
> + return 0;
> +}
> +
> +static inline xmm_t
> +transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
> + xmm_t ones_16, xmm_t bytes, xmm_t type_quad_range,
> + const uint64_t *trans, xmm_t *indicies1)
> +{
> + uint64_t t;
> + xmm_t addr, indicies2;
> +
> + indicies2 = MM_XOR(ones_16, ones_16);
> +
> + addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
> + bytes, type_quad_range, indicies1, &indicies2);
> +
> + /* Gather 64 bit transitions and pack 2 per register. */
> +
> + t = trans[MM_CVT32(addr)];
> +
> + /* get slot 1 */
> + addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
> + *indicies1 = MM_SET64(trans[MM_CVT32(addr)], t);
> +
> + return MM_SRL32(next_input, 8);
> +}
> +
> +/*
> + * Execute trie traversal with 2 traversals in parallel.
> + */
> +static inline int
> +search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
> + uint32_t *results, uint32_t total_packets, uint32_t categories)
> +{
> + int n;
> + struct acl_flow_data flows;
> + uint64_t index_array[MAX_SEARCHES_SSE2];
> + struct completion cmplt[MAX_SEARCHES_SSE2];
> + struct parms parms[MAX_SEARCHES_SSE2];
> + xmm_t input, indicies;
> +
> + acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
> + total_packets, categories, ctx->trans_table);
> +
> + for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
> + cmplt[n].count = 0;
> + index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
> + }
> +
> + indicies = MM_LOADU((xmm_t *) &index_array[0]);
> +
> + /* Check for any matches. */
> + acl_match_check_x2(0, ctx, parms, &flows, &indicies, mm_match_mask64.m);
> +
> + while (flows.started > 0) {
> +
> + /* Gather 4 bytes of input data for each stream. */
> + input = MM_INSERT32(mm_ones_16.m, GET_NEXT_4BYTES(parms, 0), 0);
> + input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
> +
> + /* Process the 4 bytes of input on each stream. */
> +
> + input = transition2(mm_index_mask64.m, input,
> + mm_shuffle_input64.m, mm_ones_16.m,
> + mm_bytes64.m, mm_type_quad_range64.m,
> + flows.trans, &indicies);
> +
> + input = transition2(mm_index_mask64.m, input,
> + mm_shuffle_input64.m, mm_ones_16.m,
> + mm_bytes64.m, mm_type_quad_range64.m,
> + flows.trans, &indicies);
> +
> + input = transition2(mm_index_mask64.m, input,
> + mm_shuffle_input64.m, mm_ones_16.m,
> + mm_bytes64.m, mm_type_quad_range64.m,
> + flows.trans, &indicies);
> +
> + input = transition2(mm_index_mask64.m, input,
> + mm_shuffle_input64.m, mm_ones_16.m,
> + mm_bytes64.m, mm_type_quad_range64.m,
> + flows.trans, &indicies);
> +
> + /* Check for any matches. */
> + acl_match_check_x2(0, ctx, parms, &flows, &indicies,
> + mm_match_mask64.m);
> + }
> +
> + return 0;
> +}
> +
> +int
> +rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
> + uint32_t *results, uint32_t num, uint32_t categories)
> +{
> + if (categories != 1 &&
> + ((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
> + return -EINVAL;
> +
> + if (likely(num >= MAX_SEARCHES_SSE8))
> + return search_sse_8(ctx, data, results, num, categories);
> + else if (num >= MAX_SEARCHES_SSE4)
> + return search_sse_4(ctx, data, results, num, categories);
> + else
> + return search_sse_2(ctx, data, results, num, categories);
> +}
> diff --git a/lib/librte_acl/rte_acl.c b/lib/librte_acl/rte_acl.c
> index 7c288bd..b9173c1 100644
> --- a/lib/librte_acl/rte_acl.c
> +++ b/lib/librte_acl/rte_acl.c
> @@ -38,6 +38,52 @@
>
> TAILQ_HEAD(rte_acl_list, rte_tailq_entry);
>
> +typedef int (*rte_acl_classify_t)
> +(const struct rte_acl_ctx *, const uint8_t **, uint32_t *, uint32_t, uint32_t);
> +
> +extern int
> +rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
> + uint32_t *results, uint32_t num, uint32_t categories);
> +
> +/* by default, use always avaialbe scalar code path. */
> +rte_acl_classify_t rte_acl_default_classify = rte_acl_classify_scalar;
Why not 'static'?
I thought you'd like to hide it from external world.
> +
> +void rte_acl_select_classify(enum acl_classify_alg alg)
> +{
> +
> + switch(alg)
> + {
> + case ACL_CLASSIFY_DEFAULT:
> + case ACL_CLASSIFY_SCALAR:
> + rte_acl_default_classify = rte_acl_classify_scalar;
> + break;
> + case ACL_CLASSIFY_SSE:
> + rte_acl_default_classify = rte_acl_classify_sse;
> + break;
> + }
> +
> +}
As this is init phase function, I suppose we can add check that alg has a valid(supported) value, and return some error as return value, if not.
> +
> +static void __attribute__((constructor))
> +rte_acl_init(void)
> +{
> + enum acl_classify_alg alg = ACL_CLASSIFY_DEFAULT;
> +
> + if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
> + alg = ACL_CLASSIFY_SSE;
> +
> + rte_acl_select_classify(alg);
> +}
> +
> +inline int rte_acl_classify(const struct rte_acl_ctx *ctx,
> + const uint8_t **data,
> + uint32_t *results, uint32_t num,
> + uint32_t categories)
> +{
> + return rte_acl_default_classify(ctx, data, results, num, categories);
> +}
> +
> +
> struct rte_acl_ctx *
> rte_acl_find_existing(const char *name)
> {
> diff --git a/lib/librte_acl/rte_acl.h b/lib/librte_acl/rte_acl.h
> index afc0f69..650b306 100644
> --- a/lib/librte_acl/rte_acl.h
> +++ b/lib/librte_acl/rte_acl.h
> @@ -267,6 +267,9 @@ rte_acl_reset(struct rte_acl_ctx *ctx);
> * RTE_ACL_RESULTS_MULTIPLIER and can't be bigger than RTE_ACL_MAX_CATEGORIES.
> * If more than one rule is applicable for given input buffer and
> * given category, then rule with highest priority will be returned as a match.
> + * Note, that this function could be run only on CPUs with SSE4.1 support.
> + * It is up to the caller to make sure that this function is only invoked on
> + * a machine that supports SSE4.1 ISA.
> * Note, that it is a caller responsibility to ensure that input parameters
> * are valid and point to correct memory locations.
> *
> @@ -286,9 +289,10 @@ rte_acl_reset(struct rte_acl_ctx *ctx);
> * @return
> * zero on successful completion.
> * -EINVAL for incorrect arguments.
> + * -ENOTSUP for unsupported platforms.
Please remove the line above: current implementation doesn't return ENOTSUP
(I think that was left from v1).
> */
> int
> -rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
> +rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
> uint32_t *results, uint32_t num, uint32_t categories);
>
> /**
> @@ -323,9 +327,23 @@ rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
> * zero on successful completion.
> * -EINVAL for incorrect arguments.
> */
> -int
> -rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
> - uint32_t *results, uint32_t num, uint32_t categories);
As I said above we'd better keep it.
> +
> +enum acl_classify_alg {
> + ACL_CLASSIFY_DEFAULT = 0,
> + ACL_CLASSIFY_SCALAR = 1,
> + ACL_CLASSIFY_SSE = 2,
> +};
As a nit: as this emum is part of public API, I think it is better to add rte_ prefix: enum rte_acl_classify_alg
> +
> +extern inline int rte_acl_classify(const struct rte_acl_ctx *ctx,
> + const uint8_t **data,
> + uint32_t *results, uint32_t num,
> + uint32_t categories);
Again as a nit: here and everywhere can we keep same style through the whole DPDK - function name from the new line:
extern nt
rte_acl_classify(...);
> +/**
> + * Analyze ISA of the current CPU and points rte_acl_default_classify
> + * to the highest applicable version of classify function.
> + */
> +extern void
> +rte_acl_select_classify(enum acl_classify_alg alg);
>
> /**
> * Dump an ACL context structure to the console.
> --
> 1.9.3
next prev parent reply other threads:[~2014-08-25 16:27 UTC|newest]
Thread overview: 21+ messages / expand[flat|nested] mbox.gz Atom feed top
2014-08-07 18:31 [dpdk-dev] [PATCHv2] " Konstantin Ananyev
2014-08-07 20:11 ` Neil Horman
2014-08-07 20:58 ` Vincent JARDIN
2014-08-07 21:28 ` Chris Wright
2014-08-08 2:07 ` Neil Horman
2014-08-08 11:49 ` Ananyev, Konstantin
2014-08-08 12:25 ` Neil Horman
2014-08-08 13:09 ` Ananyev, Konstantin
2014-08-08 14:30 ` Neil Horman
2014-08-11 22:23 ` Thomas Monjalon
2014-08-21 20:15 ` [dpdk-dev] [PATCHv3] " Neil Horman
2014-08-25 16:30 ` Ananyev, Konstantin [this message]
2014-08-26 17:44 ` Neil Horman
2014-08-27 11:25 ` Ananyev, Konstantin
2014-08-27 18:56 ` Neil Horman
2014-08-27 19:18 ` Ananyev, Konstantin
2014-08-28 9:02 ` Richardson, Bruce
2014-08-28 15:55 ` Neil Horman
2014-08-28 20:38 ` [dpdk-dev] [PATCHv4] " Neil Horman
2014-08-29 17:58 ` Ananyev, Konstantin
2014-09-01 11:05 ` Thomas Monjalon
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=2601191342CEEE43887BDE71AB9772582135D369@IRSMSX105.ger.corp.intel.com \
--to=konstantin.ananyev@intel.com \
--cc=dev@dpdk.org \
--cc=nhorman@tuxdriver.com \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Be sure your reply has a Subject: header at the top and a blank line
before the message body.
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox;
as well as URLs for NNTP newsgroup(s).